Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1130-1138    DOI: 10.3785/j.issn.1008-973X.2019.06.012
机械与能源工程     
采用卷积神经网络的老年人跌倒检测系统设计
吕艳1,2(),张萌1,姜吴昊1,倪益华1,*(),钱小鸿3
1. 浙江农林大学 工程学院,浙江 临安 311300
2. 浙江大学 机械工程学院,浙江 杭州 310027
3. 银江股份有限公司 银江研究院,浙江 杭州 310030
Design of elderly fall detection system using CNN
Yan LV1,2(),Meng ZHANG1,Wu-hao JIANG1,Yi-hua NI1,*(),Xiao-hong QIAN3
1. School of Engineering, Zhejiang A&F University, Lin’an 311300, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
3. Enjoyor Research Institute, Enjoyor Co. Ltd, Hangzhou 310030, China
 全文: PDF(1393 KB)   HTML
摘要:

为了利用便携式设备准确检测老年人的跌倒状况,针对传统算法中人为设计特征造成的不完备性,构建一种基于卷积神经网络(CNN)的老年人跌倒检测模型. 以智能手机内置的三轴传感器作为数据获取源,将采集的人体姿态信息进行滤波、标准化、采样等操作后,输入到所设计的模型中;采用梯度下降和适应性动量优化方法进行多层卷积神经网络训练和优化,获得模型关键参数训练并优化模型关键参数;利用学习到的深层次特征进行样本分类. 实验结果表明:所设计的模型对于跌倒检测的准确率明显高于一般的机器学习算法模型,并且在对跌倒和非跌倒的区分检测中,精确率和召回率都保持了较高的稳定水平.

关键词: 跌倒检测手机传感器卷积神经网络(CNN)深度学习    
Abstract:

A fall detection model based on convolutional neural network (CNN) was constructed, in order to use portable device to accurately detect the fall of the elderly and to avoid the incompleteness caused by the artificial designed features in traditional algorithms. The three-axis sensor built in the smart phone was used as the data acquisition source; the collected human body posture information was filtered, standardized, and sampled, etc. and then inputted into the designed model. Multi-layer CNN was used to train and optimize the key parameters of the model, combined with gradient descent and adaptive moment estimation optimization methods; the learned deep features were used for samples, classification. The experimental results show that the accuracy of the designed model for fall detection is significantly higher than that of the general machine learning algorithm model. In addition, the evaluation indicators have maintained a high level of stability in the detection of falls and non-falls.

Key words: fall detection    smart phone sensor    convolutional neural network (CNN)    deep learning
收稿日期: 2018-05-04 出版日期: 2019-05-22
CLC:  TP 391  
通讯作者: 倪益华     E-mail: lvyan@zju.edu.cn;nyh@zafu.edu.cn
作者简介: 吕艳(1982—),女,博士,从事语义网,数据建模研究. orcid.org/0000-0001-8991-085X. E-mail: lvyan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕艳
张萌
姜吴昊
倪益华
钱小鸿

引用本文:

吕艳,张萌,姜吴昊,倪益华,钱小鸿. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报(工学版), 2019, 53(6): 1130-1138.

Yan LV,Meng ZHANG,Wu-hao JIANG,Yi-hua NI,Xiao-hong QIAN. Design of elderly fall detection system using CNN. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1130-1138.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.012        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1130

图 1  采用卷积神经网络(CNN)的老年人跌倒检测实现过程
图 2  跌倒检测卷积神经网络模型结构
图 3  手机传感器数据(Dataset1)采集过程
图 4  人体三维运动数据获取设备
图 5  用于跌倒检测的训练样本数据格式转换
数据集 跌倒样本 非跌倒样本
采样前 采样后 采样前 采样后
Dataset1 328 656 2 072 656
Dataset2 845 1 690 4 155 1 690
表 1  采样前、后的样本数量分布
图 6  采用卷积神经网络的跌倒检测模型结构设计
图 7  跌倒检测模型数据集训练结果(Dataset1)
图 8  跌倒检测模型数据集训练结果(Dataset2)
图 9  采用不同分类模型得到的跌倒数据集Dataset1和Dataset2检测准确率对比
%
分类模型 P R F1 A
Dataset1 Dataset2 Dataset1 Dataset2 Dataset1 Dataset2 Dataset1 Dataset2
SVM 93.4 76.8 82.8 92.1 87.8 83.7 88.1 82.2
DT 90.0 80.9 87.9 68.1 88.9 73.9 88.8 76.1
RF 91.3 89.0 88.6 88.5 89.9 88.8 89.8 88.8
GBDT 90.8 86.1 87.0 86.6 88.8 86.4 88.7 86.4
AdaBoost 87.6 79.9 82.7 82.5 85.0 81.2 85.0 80.9
Voting 91.4 84.7 86.7 88.0 89.0 86.3 88.9 86.1
CNN 99.5 100 98.5 99.5 98.9 99.7 99.2 99.8
表 2  跌倒数据集Dataset1和Dataset2的各模型检测结果对比
图 10  采用跌倒数据集Dataset1的各模型精确率和召回率比较
图 11  采用跌倒数据集Dataset2的各模型精确率和召回率比较
1 师昉, 李福亮, 孙思佳, 等 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33 (3): 246- 248
SHI Fang, LI Fu-liang, SUN Si-jia, et al The present situation and countermeasures of the study of senile falls in China[J]. Chinese Journal of Rehabilitation, 2018, 33 (3): 246- 248
2 陈瑜, 姜小鹰, 杨美丽, 等 养老机构老年人跌倒效能状况及其影响因素分析[J]. 中国实用护理, 2016, 32 (6): 412- 415
CHEN Yu, JIANG Xiao-ying, YANG Mei-li, et al Investigation on the fall efficacy of elderly people in nursing homes and its influencing factors[J]. Chinese Journal of Practical Nursing, 2016, 32 (6): 412- 415
doi: 10.3760/cma.j.issn.1672-7088.2016.06.004
3 KHAN S S, HOEY J Review of fall detection techniques: a data availability perspective[J]. Medical Engineering and Physics, 2017, 1 (39): 12- 22
4 GHEN K H, HSU Y W, YANG J J, et al Enhanced characterization of an accelerometer-based fall detection algorithm using a repository[J]. Instrumentation Science and Technology, 2016, 11 (6): 382- 391
5 MADARSHAHIAN R, CAICEDO J M, ZAMBRANA D A. Evaluation of a time reversal method with dynamic time warping matching function for human fall detection using structural vibrations [C] // Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series. Florida: Springer, 2014: 171-176.
6 CHEN K H, YANG J J, JAW F S Accelerometer-based fall detection using feature extraction and support vector machine algorithms[J]. Instrumentation Science and Technology, 2016, 44 (2): 333- 342
7 LIM D, PARK C, KIM N Fall-detection algorithm using 3-axis acceleration: combination with simple threshold and hidden markov model[J]. Journal of Applied Mathematics, 2014, 9 (17): 342- 351
8 AZIZ O, MUSNGI M, PARK E J, et al. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials[J]. Medical and Biological Engineering and Computing, 2017, 55 (1): 45- 55
doi: 10.1007/s11517-016-1504-y
9 OZDEMIR A, BARSHAN B Detecting falls with wearable sensors using machine learning techniques[J]. Sensors, 2014, 14 (6): 10691- 10708
doi: 10.3390/s140610691
10 MONGIA M, KUMAR K, ERRAQABI A, et al. On random weights for texture generation in one layer CNNS [C] // ICASSP IEEE International Conference on Acoustics. New Orleans: IEEE, 2017: 2207-2211.
11 XIA Y, NAREN W L, WANG K Q, et al Detecting atrial fibrillation by deep convolutional neural networks[J]. Computers in Biology and Medicine, 2018, 93 (2): 84- 92
12 ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning [C] // Proceedings of the12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX, 2016: 265-283.
[1] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[2] 王虹力,郭斌,刘思聪,刘佳琪,仵允港,於志文. 边端融合的终端情境自适应深度感知模型[J]. 浙江大学学报(工学版), 2021, 55(4): 626-638.
[3] 张腾,蒋鑫龙,陈益强,陈前,米涛免,陈彪. 基于腕部姿态的帕金森病用药后开-关期检测[J]. 浙江大学学报(工学版), 2021, 55(4): 639-647.
[4] 徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
[5] 许豪灿,李基拓,陆国栋. 由LeNet-5从单张着装图像重建三维人体[J]. 浙江大学学报(工学版), 2021, 55(1): 153-161.
[6] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[7] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[8] 郑浦,白宏阳,李伟,郭宏伟. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784.
[9] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[10] 张彦楠,黄小红,马严,丛群. 基于深度学习的录音文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1264-1271.
[11] 明涛,王丹,郭继昌,李锵. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7): 1289-1297.
[12] 闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
[13] 杨萍,王丹,康子健,李童,付利华,余悦任. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.
[14] 汪周飞,袁伟娜. 基于深度学习的多载波系统信道估计与检测[J]. 浙江大学学报(工学版), 2020, 54(4): 732-738.
[15] 杨冰,莫文博,姚金良. 融合局部特征与深度学习的三维掌纹识别[J]. 浙江大学学报(工学版), 2020, 54(3): 540-545.