地球科学 |
|
|
|
|
基于卷积自编码器的地震数据处理 |
江金生( ),任浩然*( ),李瀚野 |
浙江大学 地球科学学院,浙江省地学大数据与地球深部资源重点实验室,浙江 杭州 310027 |
|
Seismic data processing based on convolutional autoencoder |
Jin-sheng JIANG( ),Hao-ran REN*( ),Han-ye LI |
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China |
1 |
张英强, 陆文凯.基于迭代收缩高分辨率Radon变换的地震道插值[C]//中国地球物理学会第二十九届年会.昆明: 中国地球物理学会, 2013: 632-633. ZHANG Ying-qiang, LU Wen-kai. Seismic trace interpolation method based on iterative shrinking high-resolution radon transform [C]// The 29th Annual Meeting of the Chinese Geophysical Society. Kunming: Chinese Geophysical Society, 2013: 632-633.
|
2 |
谭军, 宋鹏, 李金山, 等 基于速度加权叠加和AVO分析的叠前地震数据插值方法[J]. 石油物探, 2017, 56 (6): 812- 819 TAN Jun, SONG Peng, LI Jin-shan, et al Pre-stack seismic data interpolation based on velocity-weighted stack and AVO analysis[J]. Geophysical Prospecting for Petroleum, 2017, 56 (6): 812- 819
doi: 10.3969/j.issn.1000-1441.2017.06.006
|
3 |
王立明, 刘保华, 许江, 等 一种有效的地震道插值方法[J]. 地球物理学进展, 2012, 27 (6): 2561- 2569 WANG Li-ming, LIU Bao-hua, XU Jiang, et al An effective seismic trace interpolation method[J]. Progressin Geophys, 2012, 27 (6): 2561- 2569
doi: 10.6038/j.issn.1004-2903.2012.06.033
|
4 |
SHAN H, MA J, YANG H Comparisons of wavelets, contourlets and curvelets in seismic denoising[J]. Journal of Applied Geophysics, 2009, 69 (2): 103- 115
doi: 10.1016/j.jappgeo.2009.08.002
|
5 |
薛昭, 董良国, 单联瑜 Radon变换去噪方法的保幅性理论分析[J]. 石油地球物理勘探, 2012, 47 (6): 858- 867 XUE Zhao, DONG Liang-guo, SHAN Lian-yu Amplitude preservation theoretical analysis of radon transforms denoising method[J]. OilGeophysical Prospecting, 2012, 47 (6): 858- 867
|
6 |
彭才, 常智, 朱仕军 基于曲波变换的地震数据去噪方法[J]. 石油物探, 2008, 47 (5): 461- 464 PENG Cai, CHANG Zhi, ZHU Shi-jun Noise elimination method based on curvelet transform[J]. Geophysical Prospecting for Petroleum, 2008, 47 (5): 461- 464
doi: 10.3969/j.issn.1000-1441.2008.05.006
|
7 |
吴招才, 刘天佑 地震数据去噪中的小波方法[J]. 地球物理学进展, 2008, 23 (2): 493- 499 WU Zhao-cai, LIU Tian-you Wavelet transform methods in seismic data noise attenuation[J]. Progress in Geophysics, 2008, 23 (2): 493- 499
|
8 |
颜中辉, 栾锡武, 王赟, 等 基于经验模态分解的分数维地震随机噪声衰减方法[J]. 地球物理学报, 2017, 60 (7): 2845- 2857 YAN Zhong-hui, LUAN Xi-wu, WANG Yun, et al Seismic random noise attenuation based on empirical mode decomposition of fractal dimension[J]. Chinese Journal of Geophysics, 2017, 60 (7): 2845- 2857
doi: 10.6038/cjg20170729
|
9 |
NEELAMANI R, BAUMSTEIN A I, GILLARD D G, et al Coherent and random noise attenuation using the curvelet transform[J]. The Leading Edge, 2008, 27: 240- 248
doi: 10.1190/1.2840373
|
10 |
HINTON G, DENG L, YU D, et al Deep neural networks for acoustic modeling in speech recognition[J]. IEEE Signal Processing Magazine, 2012, 29 (6): 82- 97
doi: 10.1109/MSP.2012.2205597
|
11 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436
doi: 10.1038/nature14539
|
12 |
GUO Y, LIU Y, OERLEMANS A, et al Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27- 48
doi: 10.1016/j.neucom.2015.09.116
|
13 |
GRAMSTAD O, NICKELM. Automated interpretation of top and base salt using deep-convolutional networks [C]// 88th Annual International Meeting, SEG. Anaheim: Society of Exploration Geophysicists, 2018: 1956-1960.
|
14 |
WU X, SHI Y, FOMEL S. Convolutional neural networks for fault interpretation in seismic images [C]// 88th Annual International Meeting, SEG. Anaheim: Society of Exploration Geophysicists, 2018: 1946-1950.
|
15 |
ALFARRAJ M, ALREGIB G. Petrophysicalproperty estimation from seismic data using recurrent neural networks [C]// 88th Annual International Meeting, SEG. Anaheim: Society of Exploration Geophysicists, 2018: 2141-2146.
|
16 |
ALWON S. Generative adversarial networks in seismic data processing [C]// 88th Annual International Meeting, SEG. Anaheim: Society of Exploration Geophysicists, 2018: 1991-1995.
|
17 |
LI H, YANG W, YONG X. Deep learning for ground-roll noise attenuation [C]// 88th Annual International Meeting, SEG. Anaheim: Society of Exploration Geophysicists, 2018: 1981-1985.
|
18 |
王钰清, 陆文凯, 刘金林, 等 基于数据增广和CNN的地震随机噪声压制[J]. 地球物理学报, 2019, 62 (1): 421- 433 WANG Yu-qing, LU Wen-kai, LIU Jin-lin, et al Random seismic noise attenuation based on data augmentation and CNN[J]. Chinese Journal of Geophysics, 2019, 62 (1): 421- 433
doi: 10.6038/cjg2019M0385
|
19 |
HINTON G E, SALAKHUTDINOV R R Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507
doi: 10.1126/science.1127647
|
20 |
SHELHAMER E, LONG J, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651
doi: 10.1109/TPAMI.2016.2572683
|
21 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R SegNet: adeep convolutional encoder-decoder aqrchitecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
22 |
贾文娟, 张煜东 自编码器理论与方法综述[J]. 计算机系统应用, 2018, 27 (5): 1- 9 JIA Wen-juan, ZHANG Yu-dong Survey on theories and methods of autoencoder[J]. Computer Science and Applications, 2018, 27 (5): 1- 9
|
23 |
MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C]// Artificial Neural Networks and Machine Learning–ICANN 2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 52-59.
|
24 |
BENGIO Y, COURVILLE A, VINCENT P Representation learning: areview and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798- 1828
doi: 10.1109/TPAMI.2013.50
|
25 |
刘洋, 李炳秀, 王典, 等 基于正则化条件的地震数据局部信噪比估计方法[J]. 地球物理学报, 2017, 60 (5): 1979- 1987 LIU Yang, LI Bing-xiu, WANG Dian, et al Local SNR estimation method based on regularization for seismic data[J]. Chinese Journal of Geophysics, 2017, 60 (5): 1979- 1987
doi: 10.6038/cjg20170529
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|