机械工程 |
|
|
|
|
基于马尔可夫过程和深度神经网络的TBM围岩识别 |
毛奕喆( ),龚国芳*( ),周星海,王飞 |
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 |
|
Identification of TBM surrounding rock based on Markov process and deep neural network |
Yi-zhe MAO( ),Guo-fang GONG*( ),Xing-hai ZHOU,Fei WANG |
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.004
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I3/448
|
1 |
杨华勇, 周星海, 龚国芳 对全断面隧道掘进装备智能化的一些思考[J]. 隧道建设, 2018, 38 (12): 1919- 1926 YANG Hua-yong, ZHOU Xing-hai, GONG Guo-fang Perspectives in intelligentization of tunnel boring machine (TBM)[J]. Tunnel construction, 2018, 38 (12): 1919- 1926
doi: 10.3973/j.issn.2096-4498.2018.12.001
|
2 |
HWANG J H, LU C C A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology, 2007, 22 (1): 39- 46
doi: 10.1016/j.tust.2006.03.003
|
3 |
SCHEPERS R, RAFAT G, GELBKE C, et al Application of borehole logging, core imaging and tomography to geotechnical exploration[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38 (6): 867- 876
doi: 10.1016/S1365-1609(01)00052-1
|
4 |
ASHIDA Y Seismic imaging ahead of a tunnel face with three-component geophones[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38 (6): 823- 831
doi: 10.1016/S1365-1609(01)00047-8
|
5 |
JETSCHNY S, BOHLEN T, KURZMANN A Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves[J]. Geophysical Prospecting, 2011, 59 (5): 934- 946
|
6 |
LEE I M, TRUONG Q H, KIM D H, et al Discontinuity detection ahead of a tunnel face utilizing ultrasonic reflection: laboratory scale application[J]. Tunnelling and Underground Space Technology, 2009, 24 (2): 155- 163
doi: 10.1016/j.tust.2008.06.001
|
7 |
吴俊, 毛海和, 应松, 等 地质雷达在公路隧道短期地质超前预报中的应用[J]. 岩土力学, 2003, 24 (Suppl.1): 154- 157 WU Jun, MAO Hai-he, YING Song, et al Application of ground radar to short-term geological forecast for tunnel construction[J]. Rock and Soil Mechanics, 2003, 24 (Suppl.1): 154- 157
|
8 |
RISSAFI Y, TALBI L, GHADDAR M Experimental characterization of an UWB propagation channel in underground mines[J]. IEEE Transactions on Antennas and Propagation, 2011, 60 (1): 240- 246
|
9 |
刘新荣, 刘永权, 杨忠平, 等 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37 (2): 51- 56 LIU Xin-rong, LIU Yong-quan, YANG Zhong-pinng, et al Synthetic advanced deologicall prediction technology for tunnals based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (2): 51- 56
|
10 |
ERHARTER G H, MARCHER T, REINHOLD C Application of artificial neural networks for underground construction – chances and challenges – insights from the BBT exploratory tunnel Ahrental Pfons[J]. Geomechanics and Tunnelling, 2019, 12 (5): 472- 477
doi: 10.1002/geot.201900027
|
11 |
ERHARTER G H, MARCHER T, REINHOLD C. Comparison of artificial neural networks for TBM data classification [C]// Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering. [S.l.]: CRC Press, 2019: 2426–2433 .
|
12 |
ZHANG Q, LIU Z, TAN J Prediction of geological conditions for a tunnel boring machine using big operational data[J]. Automation in Construction, 2019, 100: 73- 83
doi: 10.1016/j.autcon.2018.12.022
|
13 |
朱北斗, 龚国芳, 周如林, 等 基于盾构掘进参数的BP神经网络地层识别[J]. 浙江大学学报: 工学版, 2011, 45 (5): 851- 857 ZHU Bei-dou, GONG Guo-fang, ZHOU Ru-lin, et al Identification of strata with BP neural network based on parameters of shield driving[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (5): 851- 857
|
14 |
JUNG J H, CHUNG H, KWON Y S, et al An ANN to predict ground condition ahead of tunnel face using TBM operational data[J]. KSCE Journal of Civil Engineering, 2019, 23 (7): 3200- 3206
doi: 10.1007/s12205-019-1460-9
|
15 |
NIE S W, XUE L, JIA G P, et al. Identification of surrounding rock in TBM excavation with deep neural network [C]// 2019 2nd International Conference on Artificial Intelligence and Big Data. Guangzhou: [s.n.], 2019: 251-255.
|
16 |
MOAVENZADEH F, EINSTEIN H H, MARKOW M J, et al. Tunnel cost model: a stochastic simulation model of hard rock tunneling. volume 1. summary report [R]. Massachusetts: [s.n.], 1974.
|
17 |
CHAN M H C. A geological prediction and updating model in tunneling [D]. Massachusetts: Massachusetts Institute of Technology, 1981.
|
18 |
IOANNOU P G Geologic prediction model for tunneling[J]. Journal of Construction Engineering and Management, 1987, 113 (4): 569- 590
doi: 10.1061/(ASCE)0733-9364(1987)113:4(569)
|
19 |
刘东海, 周云晴, 王帅, 等 岩性Markov预测下的长隧洞TBM施工进度随机仿真分析[J]. 系统仿真学报, 2009, 21 (2): 558- 562 LIU Dong-hai, ZHOU Yun-qing, WANG Shuai, et al Stochastic simulation analysis of TBM construction progress of long tunnel under the prediction of lithology Markov[J]. Journal of System Simulation, 2009, 21 (2): 558- 562
|
20 |
徐琛, 胡程科, 刘晓丽, 等 基于Markov过程与信息熵法的长隧道勘探位置优化[J]. 地下空间与工程学报, 2018, 14 (6): 1611- 1617 XU Chen, HU Cheng-ke, LIU Xiao-li, et al Location optimization of long tunnel exploration based on the Markov method and information entropy[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (6): 1611- 1617
|
21 |
王芳芳, 李景叶, 陈小宏 基于马尔科夫链先验模型的贝叶斯岩相识别[J]. 石油地球物理勘探, 2014, 41 (9): 183- 189 WANG Fang-fang, LI Jing-ye, CHEN Xiao-hong Bayesian facies identification based on Markov chain prior model[J]. Petroleum Geophysical Exploration, 2014, 41 (9): 183- 189
|
22 |
赵海雷, 陈馈, 周建军, 等 引松供水4标TBM连续穿越灰岩的施工技术研究[J]. 隧道建设, 2017, 37 (3): 354- 362 ZHAO Hai-lei, CHEN Kui, ZHOU Jian-ju, et al Research on construction technologies of TBM continuous boring through the limestone section of bid section No. 4 of Songhua river water conveyance project[J]. Tunnel Construction, 2017, 37 (3): 354- 362
doi: 10.3973/j.issn.1672-741X.2017.03.015
|
23 |
段理文. TBM操作参数智能决策方法研究[D]. 杭州: 浙江大学, 2019. DUAN Li-wen. Research on intelligent decision method of TBM operating parameters [D]. Hangzhou: Zhejiang University, 2019.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|