计算机技术 |
|
|
|
|
基于注意力机制的车辆运动轨迹预测 |
刘创( ),梁军*( ) |
浙江大学 控制科学与工程学院,浙江 杭州 310058 |
|
Vehicle motion trajectory prediction based on attention mechanism |
Chuang LIU( ),Jun LIANG*( ) |
College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China |
1 |
HELBING D, MOLNAR P Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51 (5): 4282
doi: 10.1103/PhysRevE.51.4282
|
2 |
PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: modeling social behavior for multi-target tracking [C] // 2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 261-268.
|
3 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
4 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces [C] // Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition. Las Vegas: IEEE 2016: 961-971.
|
5 |
XU K, QIN Z, WANG G, et al. Collision-Free LSTM for human trajectory prediction [C] // International Conference on Multimedia Modeling. Bangkok: Springer, Cham, 2018: 106-116.
|
6 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Munich: IEEE, 2018: 1468-1476.
|
7 |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: socially acceptable trajectories with generative adversarial networks [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2255-2264.
|
8 |
MANH H, ALAGHBAND G. Scene-LSTM: a model for human trajectory prediction [J]. arXiv Preprint, arXiv: 1808.04018, 2018.
|
9 |
XUE H, HUYNH D Q, REYNOLDS M. SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction [C] // 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe: IEEE, 2018: 1186-1194.
|
10 |
FERNANDO T, DENMAN S, SRIDHARAN S, et al Soft+ hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection[J]. Neural Networks, 2018, 108: 466- 478
doi: 10.1016/j.neunet.2018.09.002
|
11 |
GRAVES A. Generating sequences with recurrent neural networks[J]. arXiv Preprint, arXiv: 1308.0850, 2013.
|
12 |
COLYAR J, HALKIAS J. US highway 101 dataset [R]. Washington: Federal Highway Administration (FHWA), 2007.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|