Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1147-1155    DOI: 10.3785/j.issn.1008-973X.2020.06.011
计算机技术     
基于图卷积神经网络的城市交通态势预测算法
闫旭(),范晓亮*(),郑传潘,臧彧,王程,程明,陈龙彪
厦门大学 信息学院,福建 厦门 361000
Urban traffic flow prediction algorithm based on graph convolutional neural networks
Xu YAN(),Xiao-liang FAN*(),Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN
School of Informatics, Xiamen University, Xiamen 361000, China
 全文: PDF(916 KB)   HTML
摘要:

为了实时准确地预测城市交通流量,提高城市交通态势感知和预测准确度,提出一种改进的时空图卷积深度神经网络算法:基于自由流动可达矩阵的时空图卷积深度神经网络(FAST-GCN). 利用图卷积神经网络有效表达城市复杂路网的结构特性,引入自由流动可达矩阵来挖掘复杂路网的时空依赖性,从而提高交通态势预测准确度;对交通流速及站点地理位置数据进行数据预处理;在现有的时空图卷积深度神经网络算法的基础上,增加基于自由流动可达矩阵的图卷积模块,以有效挖掘城市交通路网的独特空间特征;通过一个全连接的输出层输出交通流预测结果;在真实世界数据集PeMS上对算法效果进行验证. 结果表明,采用提出的FAST-GCN算法能够有效获取交通路网独特的物理特性,从而捕获交通数据的时空依赖性,优于时空图卷积(STGCN)等基线算法,其在45 min的预测准确率最好可提高5.656%;相比基线模型,所提算法能够适应大规模路网的交通流预测,且具有可扩展性.

关键词: 交通流预测深度学习图卷积神经网络时空依赖性自由流动可达矩阵    
Abstract:

An improved spatio-temporal graph convolutional networks traffic prediction algorithm, named free-flow reachable matrix-based spatio-temporal graph convolutional networks (FAST-GCN), was proposed, in order to predict real-time traffic flows accurately and improve the sensing and prediction of citywide traffic situation. The characteristics of urban complex road network structure were expressed effectively by the graph convolutional neural network, and the spatio-temporal dependency in complex road networks was explored by introducing free-flow reachable matrices. Thus the accuracy of traffic situation prediction was improved. First, preprocess traffic speeds and sensors location data. Second, with the existing spatio-temporal graph convolutional networks, the graph convolution module based on free flow reachable matrix was integrated to effectively capture the unique spatial characteristics of the urban traffic road networks. Finally, the prediction results were generated through a fully connected output layer. The proposed model was evaluated on a real-world traffic dataset PeMS. The experimental results show that this model could capture physical characteristics of road network and spatio-temporal dependency, and outperform the baselines such as spatio-temporal graph convolutional networks (STGCN), and the prediction accuracy in 45 minutes was improved by up to 5.656%. In addition, compared with baselines, the proposed model can adapt to traffic flow prediction in large-scale road networks and has superior scalability.

Key words: traffic prediction    deep learning    graph convolution neural network    spatio-temporal dependency    free-flow reachable matrix
收稿日期: 2020-01-03 出版日期: 2020-07-06
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(61872306, U1605254, 61971363, 61802325);厦门市科技局资助项目(3502Z20193017)
通讯作者: 范晓亮     E-mail: yanxu97@stu.xmu.edu.cn;fanxiaoliang@xmu.edu.cn
作者简介: 闫旭(1997—),女,硕士生,从事智能交通系统研究. orcid.org/0000-0001-6072-069X. E-mail: yanxu97@stu.xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
闫旭
范晓亮
郑传潘
臧彧
王程
程明
陈龙彪

引用本文:

闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.

Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.011        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1147

模型 定义公式 参数数量 时间复杂度
FAST-GC ${ {{W} }_{ {g^m } } } \odot { {{F} }^m }$ ${N^2}$ $O({n^2})$
SGC ${{U}}\vartheta ({{\varLambda }}){{{U}}^{\rm{T}} }$ N $O({n^2})$
LSGC $\displaystyle\sum\nolimits_0^{ K - 1} { {\theta _k }{T_k }({{\varLambda } })}$ K $O({n^2})$
表 1  FAST-GC、SGC与LSGC的性质比较
图 1  基于自由流动可达矩阵的时空图卷积深度神经网络(FAST-GCN)算法总体框架
图 2  基于PEMSD7(S)周末数据的FAST-GC中不同阶数下的训练模型的平均绝对误差比较
图 3  基于PEMSD7(S)周末数据的FAST-GC中不同阶数下的训练效率比较
算法 MAE(15/30/45 min) MAPE(15/30/45 min) RMSE(15/30/45 min)
PeMSD7(S) PeMSD7(L) PeMSD7(S) PeMSD7(L) PeMSD7(S) PeMSD7(L)
ARIMA 3.635/4.069/4.462 3.398/3.793/4.147 9.486/10.438/11.302 8.703/9.553/10.338 8.594/9.158/9.704 8.133/8.632/9.131
SVR 4.026/4.628/5.090 3.830/4.433/4.864 12.373/13.992/15.193 11.873/13.272/14.264 8.605/9.388/10.007 8.344/9.142/9.709
CNN 3.256/3.721/3.876 3.292/3.417/3.436 7.995/9.350/10.084 8.182/8.652/8.814 5.618/6.524/6.858 5.928/6.254/6.294
LSTM 3.091/3.240/3.383 3.202/3.238/3.289 7.510/7.925/8.315 8.037/8.132/8.258 5.742/6.124/6.473 6.088/6.171/6.283
STGCN 1.878/2.564/3.052 1.742/2.434/2.953 4.359/6.233/7.560 4.095/5.842/7.043 3.839/5.440/6.454 3.669/5.293/6.410
FFR-STGCN 1.842/2.574/3.094 1.745/2.387/2.850 4.306/6.279/7.731 4.098/5.828/6.999 3.780/5.391/6.460 3.631/5.130/6.092
表 2  基于PEMSD7(S)和PEMSD7(L)的工作日数据采用不同方法训练模型的交通流预测准确度结果
算法 MAE(15/30/45 min) MAPE(15/30/45 min) RMSE(15/30/45 min)
PeMSD7(L) PeMSD7(S) PeMSD7(L) PeMSD7(L) PeMSD7(S) PeMSD7(L)
ARIMA 2.511/2.778/3.019 2.124/2.350/2.546 5.773/6.285/6.761 4.824/5.259/5.646 6.498/6.861/7.212 5.768/6.075/6.361
SVR 4.157/4.562/4.825 3.536/3.890/4.135 11.289/12.053/12.542 8.832/9.442/9.862 8.984/9.395/9.662 7.829/8.239/8.516
CNN 3.502/3.863/3.976 2.863/2.930/3.093 8.040/9.133/9.663 6.652/6.807/7.295 6.506/7.391/7.694 5.727/5.887/6.216
LSTM 3.254/3.359/3.457 2.743/2.753/2.768 7.522/7.794/8.036 6.373/6.417/6.478 6.460/6.725/6.958 5.854/5.900/5.960
STGCN 1.530/2.122/2.527 1.322/1.759/2.057 3.185/4.577/5.486 2.896/4.077/4.787 3.249/4.691/5.569 3.006/4.271/5.011
FFR-STGCN 1.486/2.045/2.428 1.310/1.741/2.029 3.108/4.469/5.339 2.855/4.119/4.919 3.167/4.484/5.254 2.992/4.214/4.891
表 3  基于PEMSD7(S)和PEMSD7(L)的周末数据采用不同方法训练模型的交通流预测准确度结果
1 刘静, 关伟 交通流预测方法综述[J]. 公路交通科技, 2004, 21 (3): 82- 85
LIU Jing, GUAN Wei Overview of traffic flow prediction methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (3): 82- 85
doi: 10.3969/j.issn.1002-0268.2004.03.022
2 李德仁, 姚远, 邵振峰 智慧城市中的大数据[J]. 武汉大学学报: 信息科学版, 2014, 58 (6): 631- 640
LI De-ren, YAO Yuan, SHAO Zhen-feng Big data in smart cities[J]. Journal of Wuhan University: Information Science Edition, 2014, 58 (6): 631- 640
3 陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究: 跨学科视野中的工程, 2014, 6 (1): 6- 19
LU Hua-pu, LI Rui-min Development status and trends of urban intelligent transportation systems[J]. Engineering Research: Engineering in Interdisciplinary Perspectives, 2014, 6 (1): 6- 19
4 HAJIMOLAHOSEINI H, AMIRFATTAHI R, SOLTANIAN-ZADEH H Robust vehicle tracking algorithm for nighttime videos captured by fixed cameras in highly reflective environments[J]. IET Computer Vision, 2014, 8 (6): 535- 544
5 SEN R, MAURYA A, RAMAN B, et al. Kyun queue: a sensor network system to monitor road traffic queues [C] // Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. Toronto: ACM, 2012: 127-140.
6 CHEN C, PETTY K, SKABARDONIS A, et al Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record, 2001, 1748 (1): 96- 102
doi: 10.3141/1748-12
7 VLAHOGIANNI E I. Computational intelligence and optimization for transportation big data: challenges and opportunities [M] // Engineering and Applied Sciences Optimization. Cham: Springer, 2015: 107-128.
8 MAKRIDAKIS S, HIBON M ARMA models and the Box–Jenkins methodology[J]. Journal of Forecasting, 1997, 16 (3): 147- 163
9 HAMED M M, Al-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
10 SMOLA A J, SCHOLKOPF B A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222
11 HUANG W, SONG G, HONG H, et al Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2191- 2201
doi: 10.1109/TITS.2014.2311123
12 HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
13 CHO K, VAN MERRIENBOER B, GULVEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv Preprint, arXiv: 1406.1078, 2014.
14 CUI Z, KE R, WANG Y. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction [J]. arXiv Preprint, arXiv: 1801.02143, 2018.
15 ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction [C] // Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017.
16 LECUN Y, BOSER B, DENKER J S, et al Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1 (4): 541- 551
17 MA X L, DAI Z, HE Z B, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
18 SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80
19 ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: A review of methods and applications [J]. arXiv Preprint, arXiv: 1812.08434, 2018.
20 LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [J]. arXiv Preprint, arXiv: 1707.01926, 2017.
21 YU, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting [J]. arXiv Preprint. arXiv: 1709.04875, 2017.
22 CUI Z, HENRICKSON K, KE R, et al Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,
23 GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 922-929.
24 ZHANG N, GUAN X, CAO J, et al. A hybrid traffic speed forecasting approach integrating wavelet transform and motif-based graph convolutional recurrent neural network [J]. arXiv Preprint. arXiv: 1904.06656, 2019.
25 SUN J, ZHANG J, LI Q, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks [J]. arXiv Preprint. arXiv: 1903.07789, 2019.
26 CHEN C, LI K, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 485-492.
27 ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction [J]. arXiv Preprint, arXiv: 1911.08415, 2019.
28 SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
[1] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[2] 王虹力,郭斌,刘思聪,刘佳琪,仵允港,於志文. 边端融合的终端情境自适应深度感知模型[J]. 浙江大学学报(工学版), 2021, 55(4): 626-638.
[3] 张腾,蒋鑫龙,陈益强,陈前,米涛免,陈彪. 基于腕部姿态的帕金森病用药后开-关期检测[J]. 浙江大学学报(工学版), 2021, 55(4): 639-647.
[4] 徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
[5] 许豪灿,李基拓,陆国栋. 由LeNet-5从单张着装图像重建三维人体[J]. 浙江大学学报(工学版), 2021, 55(1): 153-161.
[6] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[7] 郑浦,白宏阳,李伟,郭宏伟. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784.
[8] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[9] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[10] 明涛,王丹,郭继昌,李锵. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7): 1289-1297.
[11] 汪周飞,袁伟娜. 基于深度学习的多载波系统信道估计与检测[J]. 浙江大学学报(工学版), 2020, 54(4): 732-738.
[12] 杨冰,莫文博,姚金良. 融合局部特征与深度学习的三维掌纹识别[J]. 浙江大学学报(工学版), 2020, 54(3): 540-545.
[13] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[14] 贾子钰,林友芳,张宏钧,王晶. 基于深度卷积神经网络的睡眠分期模型[J]. 浙江大学学报(工学版), 2020, 54(10): 1899-1905.
[15] 王万良,杨小涵,赵燕伟,高楠,吕闯,张兆娟. 采用卷积自编码器网络的图像增强算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1728-1740.