Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2138-2148    DOI: 10.3785/j.issn.1008-973X.2020.11.009
计算机与控制工程     
基于深度学习的遥感影像变化检测方法
王昶1,2(),张永生1,*(),王旭3,于英1
1. 中国人民解放军战略支援部队信息工程大学 地理空间信息学院,河南 郑州 450001
2. 辽宁科技大学 土木工程学院,辽宁 鞍山 114051
3. 辽宁生态职业技术学院 测绘工程学院,辽宁 沈阳 110101
Remote sensing image change detection method based on deep neural networks
Chang WANG1,2(),Yong-sheng ZHANG1,*(),Xu WANG3,Ying YU1
1. School of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
2. School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China
3. Surveying and Mapping Engineering Institute, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
 全文: PDF(2468 KB)   HTML
摘要:

为了获得可靠的训练样本及提高遥感影像变化检测的精度,提出基于深度学习的遥感影像变化检测方法. 采用结构相似性方法(SSIM)选取纹理特征(灰度共生矩阵法),通过融合变化向量分析(CVA)方法获取不同时相遥感影像差异图(DI)及纹理特征差异图获得差异影像,并采用构造的变分去噪模型对差异影像进行去噪. 利用频域显著性方法获取去噪差异影像的显著性图,通过模糊c-均值(FCM)算法对粗变化检测图(对显著性图选取阈值获得的)进行预分类(变化类、未变化类及未确定类). 将从遥感影像上提取的变化像素和未变化像素的邻域特征引入深度神经网络模型进行训练,并利用训练好的深度神经网络模型对差异影像进行变化检测,得到最终的变化检测图. 对3组遥感影像数据集进行变化检测实验,结果表明本研究方法的变化检测精度高于其他比较方法.

关键词: 频域显著性方法变化向量分析灰度共生矩阵深度神经网络差异影像    
Abstract:

A remote sensing image change detection method based on deep learning was proposed to obtain reliable training samples and improve the accuracy of remote sensing image change detection. Firstly, texture features (gray co-occurrence matrix method) are selected by structural similarity method (SSIM), and the multitemporal remote sensing image difference image (DI) and textural feature DI obtained by change vector analysis (CVA) are fused to construct the final DI, then the difference images are denoised by the constructed variational denoising model. Secondly, the frequency domain significance method is used to obtain the DI saliency map, and the coarse change detection map obtained by selecting a threshold for the DI saliency map is pre-classified (change, unchanged and undetermined) by the fuzzy c-means (FCM) clustering algorithm. Finally, the neighborhood features of the changed pixels and unchanged pixels extracted from remote sensing images are introduced into the deep neural network model for training, and the trained deep neural network model is used to detect the changes in multitemporal remote sensing image, then the final change detection map is obtained. Experiment on three real remote sensing image data sets shows that the change detection accuracy of the proposed method is higher than that of other comparison methods.

Key words: frequency domain significance method    change vector analysis    grey level co-occurrence matrix    deep neural network    different image
收稿日期: 2019-09-18 出版日期: 2020-12-15
CLC:  TP 75  
基金资助: 国家自然科学基金资助项目(41501482)
通讯作者: 张永生     E-mail: wangchang324@163.com;yszhang2001@vip.163.com
作者简介: 王昶(1983—),男,博士生,从事卫星遥感影像处理. orcid.org/0000-0003-3132-2996. E-mail: wangchang324@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王昶
张永生
王旭
于英

引用本文:

王昶,张永生,王旭,于英. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2138-2148.

Chang WANG,Yong-sheng ZHANG,Xu WANG,Ying YU. Remote sensing image change detection method based on deep neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2138-2148.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.009        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2138

图 1  特征深度神经网络
图 2  基于深度学习的遥感影像变化检测方法流程图
图 3  实验遥感影像数据集
图 4  本研究构造DI(无去噪)、本研究构造DI(变分去噪)及CVA方法获得的3组遥感影像数据集差异图
图 5  3组遥感影像数据集DI显著性图及粗变化检测图
数据集 方法 FN FP OE PCC KC
Landsat-7 CVA+FDS+FCM+DNNs 6380 241 6621 0.9742 0.8383
本研究方法(无去噪) 1752 1650 3402 0.9867 0.9259
本研究方法(变分去噪) 1686 1654 3340 0.9870 0.9272
Spot5数据集 CVA+FDS+FCM+DNNs 12360 6741 19101 0.9208 0.5761
本研究方法(无去噪) 7114 8023 15137 0.9373 0.6890
本研究方法(变分去噪) 6501 7766 14267 0.9409 0.7052
Ikonos数据集 CVA+FDS+FCM+DNNs 32816 5043 37859 0.9657 0.9075
本研究方法(无去噪) 19048 17875 36932 0.9666 0.9127
本研究方法(变分去噪) 18824 14228 33052 0.9701 0.9222
表 1  3组遥感影像变化检测评价指标统计结果(实验1)
图 6  3组遥感影像数据集变化检测实验结果图(实验1)
数据集 去噪方法 FN FP OE PCC KC
Landsat-7 Lee滤波 1532 1861 3393 0.9868 0.9256
Frost滤波 1562 1829 3392 0.9868 0.9257
均值滤波 1514 1834 3348 0.9869 0.9266
变分去噪 1686 1654 3340 0.9870 0.9272
Spot5数据集 Lee滤波 6877 8022 14899 0.9382 0.6928
Frost滤波 7031 7902 14933 0.9381 0.6934
均值滤波 6752 8064 14816 0.9387 0.6942
变分去噪 6501 7766 14267 0.9409 0.7052
Ikonos数据集 Lee滤波 22474 14482 36956 0.9663 0.9128
Frost滤波 23189 14482 37671 0.9659 0.9117
均值滤波 20523 15037 35560 0.9678 0.9164
变分去噪 18824 14228 33052 0.9701 0.9222
表 2  本研究方法的不同去噪方法对3组遥感数据集变化检测评价指标统计结果
图 7  本研究方法的不同去噪方法对3组实验遥感影像数据集变化检测结果图
数据集 方法 FN FP OE PCC KC
Landsat-7 CVA+FLICM 1113 3506 4619 0.9824 0.8956
CVA+MRFFCM 1439 4272 5711 0.9782 0.8699
CVA+SVM 1567 6286 7753 0.9704 0.8466
CVA+FDS+FCM+ELM 7983 189 8172 0.9688 0.7952
PCAKM 5103 833 5936 0.9774 0.8611
JFCM+DNNs 346 7658 8004 0.9687 0.7996
本研究方法(变分去噪) 1686 1654 3340 0.9870 0.9272
Spot5数据集 CVA+FLICM 26418 3481 29899 0.8787 0.5257
CVA+MRFFCM 25247 12176 37423 0.8481 0.4582
CVA+SVM 26364 9287 35651 0.8553 0.4649
CVA+FDS+FCM+ELM 32611 1766 34377 0.8605 0.4093
PCAKM 28269 9808 38077 0.8455 0.4211
JFCM+DNNs 9508 8314 17822 0.9261 0.6456
本研究方法(变分去噪) 6501 7766 14267 0.9409 0.7052
Ikonos数据集 CVA+FLICM 40622 27961 68583 0.9386 0.8366
CVA+MRFFCM 39397 42065 81462 0.9270 0.8094
CVA+SVM 42581 31325 73906 0.9338 0.8243
CVA+FDS+FCM+ELM 40950 23812 64762 0.9420 0.8449
PCAKM 48680 45876 94556 0.9153 0.7773
JFCM+DNNs 14724 34830 49554 0.9551 0.8800
本研究方法(变分去噪) 18824 14228 33052 0.9701 0.9222
表 3  3组遥感影像变化检测评价指标统计结果(实验2)
图 8  3组遥感影像数据集变化检测实验结果图(实验2)
1 HUSSAIN M, CHEN D, CHENG A Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80 (2): 91- 106
2 BOVOLO F, BRUZZONE L A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (1): 218- 236
doi: 10.1109/TGRS.2006.885408
3 ZHANG M, ZHAO Y Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22 (1): 119- 131
4 FENG W, ZHANG Y. Object-oriented change detection for remote sensing images based on multi-scale fusion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151.
5 LI L, SHU N, WANG K Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartogrphica Sinica, 2014, 43 (9): 945- 953
6 CELIK T Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 772- 776
doi: 10.1109/LGRS.2009.2025059
7 MISHRA N S, GHOSH S, GHOSH A Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12 (8): 2683- 2692
doi: 10.1016/j.asoc.2012.03.060
8 STELIOS K, VASSILIOS C A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328- 1337
doi: 10.1109/TIP.2010.2040763
9 GONG M, ZHOU Z, MA J Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21 (4): 2141- 2151
doi: 10.1109/TIP.2011.2170702
10 GAO F, DONG J, LI B. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4): 1-14.
11 TAN K, JIN X, PLAZA A Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (8): 3339- 3451
12 GONG M, ZHAO J, LIU J Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (1): 125- 138
doi: 10.1109/TNNLS.2015.2435783
13 ZHANG X, CHEN X, LI F Change detection method for high resolution remote sensing images using deep learining[J]. Acta Geodaetica et Cartogrphica Sinica, 2017, 46 (8): 999- 1008
14 王昶, 王旭, 纪松 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53 (3): 143- 149
WANG Chang, WANG Xu, JI Song Strip noise removal of remote images by variation[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 143- 149
[1] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[2] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[3] 陈世达,刘强,韩亮. 降低分布式训练通信的梯度稀疏压缩方法[J]. 浙江大学学报(工学版), 2021, 55(2): 386-394.
[4] 陈纬奇,王敬昌,陈岭,杨勇勤,吴勇. 基于深度神经网络的多因素感知终端换机预测模型[J]. 浙江大学学报(工学版), 2021, 55(1): 109-115.
[5] 江金生,任浩然,李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报(工学版), 2020, 54(5): 978-984.
[6] 张太恒,梅标,乔磊,杨浩杰,朱伟东. 纹理边界引导的复合材料圆孔检测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2294-2300.
[7] 赵辽英, 陈小芬, 厉小润. 变化向量分析结合光谱解混的高光谱变化检测[J]. 浙江大学学报(工学版), 2017, 51(10): 1912-1919.
[8] 任会峰, 阳春华, 周璇, 桂卫华, 鄢锋. 基于泡沫图像特征加权SVM的浮选工况识别[J]. J4, 2011, 45(12): 2115-2119.
[9] 韩凝, 张秀英, 王小明, 陈利苏, 王珂. 高分辨率影像香榧树分布信息提取[J]. J4, 2010, 44(3): 420-425.
[10] 林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.
[11] 李晓丽 何勇 裘正军 吴迪 陈孝敬. 基于多光谱图像的不同品种绿茶的纹理识别[J]. J4, 2008, 42(12): 2131-2138.