建筑与交通工程 |
|
|
|
|
基于神经网络的建筑能耗混合预测模型 |
于军琪1( ),杨思远2,赵安军1,*( ),高之坤2 |
1. 西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055 2. 西安建筑科技大学 信息与控制工程学院,陕西 西安 710055 |
|
Hybrid prediction model of building energy consumption based on neural network |
Jun-qi YU1( ),Si-yuan YANG2,An-jun ZHAO1,*( ),Zhi-kun GAO2 |
1. School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2. School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
引用本文:
于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1220-1231.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.021
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1220
|
1 |
中国建筑节能协会 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49 (2): 1- 6 China Association of Building Energy Efficiency China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49 (2): 1- 6
|
2 |
DONG Z, LIU J, LIU B, et al Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification[J]. Energy and Buildings, 2021, 241: 110929
doi: 10.1016/j.enbuild.2021.110929
|
3 |
AMASYALI K, EL-GOHARY N M A review of date-driven building energy consumption prediction studies[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1192- 1205
doi: 10.1016/j.rser.2017.04.095
|
4 |
ILBEIGI M, GHOMEISHI M, DEHGHANBANADAKI A Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm[J]. Sustainable Cities and Society, 2020, 61: 102325
doi: 10.1016/j.scs.2020.102325
|
5 |
MOHANDES S R, ZHANG X, MAHDIYAR A A comprehensive review on the application of artificial neural networks in building energy analysis[J]. Neurocomputing, 2019, 340: 55- 75
doi: 10.1016/j.neucom.2019.02.040
|
6 |
BOROWSKI M, ZWOLIŃSKA K Prediction of cooling energy consumption in hotel building using machine learning techniques[J]. Energies, 2020, 13 (23): 1- 19
|
7 |
JOVANOVIĆ R Ž, SRETENOVIĆ A A, ŽIVKOVIĆ B D Ensemble of various neural networks for prediction of heating energy consumption[J]. Energy and Buildings, 2015, 94: 189- 199
doi: 10.1016/j.enbuild.2015.02.052
|
8 |
WANG Z, HONG T, PIETTE M A Data fusion in predicting internal heat gains for office buildings through a deep learning approach[J]. Applied Energy, 2019, 240: 386- 398
doi: 10.1016/j.apenergy.2019.02.066
|
9 |
邵光成, 章坤, 王志宇, 等 基于IABC-RBF神经网络的地下水埋深预测模型[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1323- 1330 SHAO Guang-cheng, ZHANG Kun, WANG Zhi-yu, et al Groundwater depth prediction model based on IABC-RBF neural network[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1323- 1330
|
10 |
LI K, SU H, CHU J Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study[J]. Energy and Buildings, 2011, 43 (10): 2893- 2899
doi: 10.1016/j.enbuild.2011.07.010
|
11 |
ZHOU G, MOAYEDI H, BAHIRAEI M, et al Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings[J]. Journal of Cleaner Production, 2020, 254: 120082
doi: 10.1016/j.jclepro.2020.120082
|
12 |
HUANG Y, LI C Accurate heating, ventilation and air conditioning system load prediction for residential buildings using improved ant colony optimization and wavelet neural network[J]. Journal of Building Engineering, 2021, 35: 101972
doi: 10.1016/j.jobe.2020.101972
|
13 |
GAO X, QI C, XUE G, et al Forecasting the heat load of residential buildings with heat metering based on CEEMDAN-SVR[J]. Energies, 2020, 13 (22): 6079
doi: 10.3390/en13226079
|
14 |
DING Y, ZHANG Q, YUAN T, et al Model input selection for building heating load prediction: a case study for an office building in Tianjin[J]. Energy and Buildings, 2018, 159: 254- 270
doi: 10.1016/j.enbuild.2017.11.002
|
15 |
LIU M D, DING L, BAI Y L Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management, 2021, 233: 113917
doi: 10.1016/j.enconman.2021.113917
|
16 |
KIRAN M S TSA: tree-seed algorithm for continuous optimization[J]. Expert Systems with Applications, 2015, 42 (19): 6686- 6698
doi: 10.1016/j.eswa.2015.04.055
|
17 |
XI Z, XU A, KOU Y, et al Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 498- 516
doi: 10.23919/JSEE.2021.000042
|
18 |
CHEN G, TANG B, ZENG X, et al Short-term wind speed forecasting based on long short-term memory and improved BP neural network[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107365
doi: 10.1016/j.ijepes.2021.107365
|
19 |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague: IEEE, 2011: 4144-4147.
|
20 |
TIBSHIRANI R Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodological), 1996, 58 (1): 267- 288
doi: 10.1111/j.2517-6161.1996.tb02080.x
|
21 |
HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
|
22 |
SUN H, ZHAI W, WANG Y, et al Privileged information-driven random network based non-iterative integration model for building energy consumption prediction[J]. Applied Soft Computing, 2021, 108: 107438
doi: 10.1016/j.asoc.2021.107438
|
23 |
RICHMAN J S, MOORMAN J R Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology: Heart and Circulatory Physiology, 2000, 278 (6): H2039- H2049
doi: 10.1152/ajpheart.2000.278.6.H2039
|
24 |
施莹, 林建辉, 庄哲, 等 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38 (8): 180- 187 SHI Ying, LIN Jian-hui, ZHUANG Zhe, et al Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals[J]. Journal of Vibration and Shock, 2019, 38 (8): 180- 187
|
25 |
WU Q, LIN H Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network[J]. Sustainable Cities and Society, 2019, 50: 101657
doi: 10.1016/j.scs.2019.101657
|
26 |
SUN Y, HAGHIGHAT F, FUNG B C M A review of the-state-of-the-art in data-driven approaches for building energy prediction[J]. Energy and Buildings, 2020, 221: 110022
doi: 10.1016/j.enbuild.2020.110022
|
27 |
GAO Z, YU J, ZHAO A, et al A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine[J]. Energy, 2022, 238: 122073
doi: 10.1016/j.energy.2021.122073
|
28 |
韩波, 李衡, 王志波, 等 气溶胶光学厚度估测中的LASSO特征选择方法[J]. 武汉大学学报:信息科学版, 2018, 43 (4): 536- 541 HAN Bo, LI Heng, WANG Zhi-bo, et al A feature selection approach via LASSO for aerosol optical thickness estimation[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (4): 536- 541
|
29 |
李鱼强, 潘天红, 李浩然, 等 近红外光谱LASSO特征选择方法及其聚类分析应用研究[J]. 光谱学与光谱分析, 2019, 39 (12): 3809- 3815 LI Yu-qiang, PAN Tian-hong, LI Hao-ran, et al NIR spectral feature selection using LASSO method and its application in the classification analysis[J]. Spectroscopy and Spectral Analysis, 2019, 39 (12): 3809- 3815
|
30 |
EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression [EB/OL]. [2021-10-27]. https://hastie.su.domains/Papers/LARS/LeastAngle_2002.pdf.
|
31 |
甘敏, 彭晓燕, 彭辉 RBF神经网络参数估计的两种混合优化算法[J]. 控制与决策, 2009, 24 (8): 1172- 1176 GAN Min, PENG Xiao-yan, PENG Hui Two hybrid parameter optimization algorithms for RBF neural networks[J]. Control and Decision, 2009, 24 (8): 1172- 1176
doi: 10.3321/j.issn:1001-0920.2009.08.010
|
32 |
YANG Z, MOURSHED M, LIU K, et al A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting[J]. Neurocomputing, 2020, 397: 415- 421
doi: 10.1016/j.neucom.2019.09.110
|
33 |
KOSE E Optimal control of AVR system with tree seed algorithm-based PID controller[J]. IEEE Access, 2020, 8: 89457- 89467
doi: 10.1109/ACCESS.2020.2993628
|
34 |
DUAN J, WANG P, MA W, et al A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting[J]. International Journal of Electrical Power and Energy Systems, 2022, 134: 107452
doi: 10.1016/j.ijepes.2021.107452
|
35 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-10-27]. https://arxiv.org/pdf/1412.6980.pdf.
|
36 |
BALAJI E, BRINDHA D, ELUMALAI V K, et al Automatic and non-invasive Parkinson's disease diagnosis and severity rating using LSTM network[J]. Applied Soft Computing, 2021, 108: 107463
doi: 10.1016/j.asoc.2021.107463
|
37 |
CHANG Z, ZHANG Y, CHEN W Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform[J]. Energy, 2019, 187: 115804
doi: 10.1016/j.energy.2019.07.134
|
38 |
尹爱军, 赵磊, 吴宏钢 相关法动平衡校正中的3σ准则误差处理方法[J]. 重庆大学学报, 2013, 36 (10): 22- 26 YIN Ai-jun, ZHAO Lei, WU Hong-gang Error process based on 3σ rule used in balancing by correlation theory[J]. Journal of Chongqing University, 2013, 36 (10): 22- 26
|
39 |
胡沛然, 陈少辉 权重归一化拉格朗日插值及其空间降尺度应用[J]. 遥感信息, 2019, 34 (6): 63- 71 HU Pei-ran, CHEN Shao-hui Weight normalization based Lagrange interpolation and its application in downscaling[J]. Remote Sensing Information, 2019, 34 (6): 63- 71
doi: 10.3969/j.issn.1000-3177.2019.06.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|