机械工程、能源工程 |
|
|
|
|
基于门控循环单元与误差修正的短期负荷预测 |
黄炜( ),陈田*( ),吴入军 |
上海电机学院 机械学院,上海 201306 |
|
Short term load forecasting based on gated recurrent unit and error correction |
Wei HUANG( ),Tian CHEN*( ),Ru-jun WU |
School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China |
1 |
陈剑强, 杨俊杰, 楼志斌 基于XGBoost算法的新型短期负荷预测模型研究[J]. 电测与仪表, 2019, 56 (21): 23- 29 CHEN Jian-qiang, YANG Jun-jie, LOU Zhi-bin A new short-term load forecasting model based on XGBoost algorithm[J]. Electrical Measurement and Instrumentation, 2019, 56 (21): 23- 29
|
2 |
龚钢军, 安晓楠, 陈志敏, 等 基于SAE-ELM的电动汽车充电站负荷预测模型[J]. 现代电力, 2019, 36 (6): 9- 15 GONG Gang-jun, AN Xiao-nan, CHEN Zhi-min, et al Model of load forecasting of electric vehicle charging station based on SAE-ELM[J]. Modern Electric Power, 2019, 36 (6): 9- 15
doi: 10.3969/j.issn.1007-2322.2019.06.002
|
3 |
谢敏, 邓佳梁, 吉祥, 等 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术, 2017, 41 (1): 217- 221 XIE Min, DENG Jia-liang, JI Xiang, et al Cooling load forecasting method of based on support vector machine optimized with entropy and variable accuracy roughness set[J]. Power System Technology, 2017, 41 (1): 217- 221
|
4 |
赵洪山, 田甜 基于自适应无迹卡尔曼滤波的电力系统动态状态估计[J]. 电网技术, 2014, 38 (1): 188- 192 ZHAO Hong-shan, TIAN Tian Dynamic state estimation for power system based on an adaptive unscented Kalman filter[J]. Power System Technology, 2014, 38 (1): 188- 192
|
5 |
LV P, LIU S, YU W, et al EGA-STLF: a hybrid short-term load forecasting model[J]. IEEE Access, 2020, 8: 31742- 31752
doi: 10.1109/ACCESS.2020.2973350
|
6 |
陆继翔, 张琪培, 杨志宏, 等 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (8): 131- 137 LU Ji-xiang, ZHANG Qi-pei, YANG Zhi-hong, et al Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43 (8): 131- 137
doi: 10.7500/AEPS20181012004
|
7 |
CHEN K, WANG Q, HE Z, HU J, et al Short-term load forecasting with deep residual networks[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 3943- 3952
doi: 10.1109/TSG.2018.2844307
|
8 |
HAQ M R, NI Z A new hybrid model for short-term electricity load forecasting[J]. IEEE Access, 2019, 7: 125413- 125423
doi: 10.1109/ACCESS.2019.2937222
|
9 |
SHI H, XU M, LI R Deep learning for household load forecasting: a novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9 (5): 5271- 5280
doi: 10.1109/TSG.2017.2686012
|
10 |
SEHOVAC L, GROLINGER K Deep Learning for load forecasting: sequence to sequence recurrent neural networks with attention[J]. IEEE Access, 2020, 8: 36411- 36426
doi: 10.1109/ACCESS.2020.2975738
|
11 |
TANG X, DAI Y, LIU Q, et al Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting[J]. IEEE Access, 2019, 7: 160660- 160670
doi: 10.1109/ACCESS.2019.2950957
|
12 |
JIAO R, ZHANG T, JIANG Y, et al Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network[J]. IEEE Access, 2018, 6: 59438- 59448
doi: 10.1109/ACCESS.2018.2873712
|
13 |
KONG W, DONG Z Y, JIA Y, et al Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 841- 851
doi: 10.1109/TSG.2017.2753802
|
14 |
ZHENG C, WANG S, LIU Y, et al A novel equivalent model of active distribution networks based on LSTM[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2611- 2624
doi: 10.1109/TNNLS.2018.2885219
|
15 |
XIUYUN G, YING W, YANG G, et al. Short-term load forecasting model of GRU network based on deep learning framework [C]// 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing: IEEE, 2018: 1-4.
|
16 |
DONG M, GRUMBACH L A hybrid distribution feeder long-term load forecasting method based on sequence prediction[J]. IEEE Transactions on Smart Grid, 2020, 11 (1): 470- 482
doi: 10.1109/TSG.2019.2924183
|
17 |
SEHOVAC L, NESEN C, GROLINGER K. Forecasting building energy consumption with deep learning: a sequence to sequence approach [C]// 2019 IEEE International Congress on Internet of Things (ICIOT). Milan: IEEE, 2019: 108-116.
|
18 |
AFRASIABI M, MOHAMMADI M, RASTEGAR M, et al Probabilistic deep neural network price forecasting based on residential load and wind speed predictions[J]. IET Renewable Power Generation, 2019, 13 (11): 1840- 1848
doi: 10.1049/iet-rpg.2018.6257
|
19 |
TANG X, DAI Y, WANG T, et al Short-term power load forecasting based on multi-layer bidirectional recurrent neural network[J]. IET Generation, Transmission and Distribution, 2019, 13 (17): 3847- 3854
doi: 10.1049/iet-gtd.2018.6687
|
20 |
PAN D, XU B, MA J, et al. Short-term load forecasting based on EEMD-approximate entropy and ELM [C]// 2019 IEEE Sustainable Power and Energy Conference. Beijing: IEEE, 2019: 1772-1775.
|
21 |
YE J, YANG L. Short-term load forecasting using ensemble empirical mode decomposition and harmony search optimized support vector regression [C]// 2019 14th IEEE Conference on Industrial Electronics and Applications. Xi'an: IEEE, 2019: 851-855.
|
22 |
ZHU X, QI H, HUANG X, et al. A hybrid method for short-term load forecasting in power system [C]// Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing: [s.n], 2012: 696-699.
|
23 |
LI P, LIU H, LI M, et al. Power load forecasting based on VMD multifrequency combinations [C]// 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Chongqing: [s.n], 2019: 1214-1218.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|