土木工程 |
|
|
|
|
基于加权残差聚类的建筑负荷预测区间估计 |
章超波1,2,3( ),刘永政4,李宏波1,2,*( ),赵阳3,张丽珠3,王子豪3 |
1. 空调设备与系统节能国家重点实验室,广东 珠海 519000 2. 广东省制冷设备与节能技术重点实验室,广东 珠海 519000 3. 浙江大学 制冷与低温研究所,浙江 杭州 310027 4. 浙江大学 能源工程学院,浙江 杭州 310027 |
|
Weighted residual clustering-based building load prediction interval estimation |
Chao-bo ZHANG1,2,3( ),Yong-zheng LIU4,Hong-bo LI1,2,*( ),Yang ZHAO3,Li-zhu ZHANG3,Zi-hao WANG3 |
1. State Key Laboratory of Air-Conditioning Equipment and System Energy Conservation, Zhuhai 519000, China 2. Guangdong Key Laboratory of Refrigeration Equipment and Energy Conservation Technology, Zhuhai 519000, China 3. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China 4. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
章超波,刘永政,李宏波,赵阳,张丽珠,王子豪. 基于加权残差聚类的建筑负荷预测区间估计[J]. 浙江大学学报(工学版), 2022, 56(5): 930-937.
Chao-bo ZHANG,Yong-zheng LIU,Hong-bo LI,Yang ZHAO,Li-zhu ZHANG,Zi-hao WANG. Weighted residual clustering-based building load prediction interval estimation. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 930-937.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.010
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I5/930
|
1 |
龙惟定, 梁浩 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51 (4): 1- 17 LONG Wei-ding, LIANG Hao Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J]. Journal of HV and AC, 2021, 51 (4): 1- 17
|
2 |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2020[M]. 北京: 中国建筑工业出版社, 2020.
|
3 |
刘奇特. 基于群智能的中央空调冷站节能优化方法研究[D]. 西安: 西安建筑科技大学, 2020. LIU Qi-te. Research on the energy-saving optimization methods of central air-conditioning chilled station based on the insect intelligence [D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
|
4 |
ZHANG C, LI J, ZHAO Y, et al A hybrid deep learning-based method for short-term building energy load prediction combined with an interpretation process[J]. Energy and Buildings, 2020, 225: 110301
doi: 10.1016/j.enbuild.2020.110301
|
5 |
GASSAR A A A, CHA S H Energy prediction techniques for large-scale buildings towards a sustainable built environment: a review[J]. Energy and Buildings, 2020, 224: 110238
doi: 10.1016/j.enbuild.2020.110238
|
6 |
孙超, 孟祥萍, 王晖, 等 改进BP神经网络的楼宇负荷预测[J]. 自动化应用, 2020, (10): 61- 64 SUN Chao, MENG Xiang-ping, WANG Hui, et al Research on building load forecasting based on improved BP neural network[J]. Automation Application, 2020, (10): 61- 64
|
7 |
FAN C, XIAO F, ZHAO Y A short-term building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222- 233
doi: 10.1016/j.apenergy.2017.03.064
|
8 |
SAEEDI M, MORADI M, HOSSEINI M, et al Robust optimization based optimal chiller loading under cooling demand uncertainty[J]. Applied Thermal Engineering, 2019, 148: 1081- 1091
doi: 10.1016/j.applthermaleng.2018.11.122
|
9 |
ZHANG C, ZHAO Y, FAN C, et al A generic prediction interval estimation method for quantifying the uncertainties in ultra-short-term building cooling load prediction[J]. Applied Thermal Engineering, 2020, 173: 115261
doi: 10.1016/j.applthermaleng.2020.115261
|
10 |
DAHL M, BRUN A, ANDRESEN G B Using ensemble weather predictions in district heating operation and load forecasting[J]. Applied Energy, 2017, 193: 455- 465
doi: 10.1016/j.apenergy.2017.02.066
|
11 |
RODRÍGUEZ F, BAZMOHAMMADI N, GUERRERO J M, et al A very short-term probabilistic prediction interval forecaster for reducing load uncertainty level in smart grids[J]. Applied Sciences, 2021, 11 (6): 2538
doi: 10.3390/app11062538
|
12 |
GUAN C, LUH P B, MICHEL L D, et al Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation[J]. IEEE Transactions on Power Systems, 2013, 28 (4): 3806- 3817
doi: 10.1109/TPWRS.2013.2264488
|
13 |
ZHANG C, ZHAO Y, ZHANG X, et al An improved cooling load prediction method for buildings with the estimation of prediction intervals[J]. Procedia Engineering, 2017, 205: 2422- 2428
doi: 10.1016/j.proeng.2017.09.967
|
14 |
QUAN H, SRINIVASAN D, KHOSRAVI A Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73: 916- 925
doi: 10.1016/j.energy.2014.06.104
|
15 |
WANG J, GAO Y, CHEN X A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting[J]. Energies, 2018, 11 (6): 1561
doi: 10.3390/en11061561
|
16 |
XU C, CHEN H A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data[J]. Energy and Buildings, 2020, 215: 109864
doi: 10.1016/j.enbuild.2020.109864
|
17 |
WANG L, KUBICHEK R, ZHOU X Adaptive learning based data-driven models for predicting hourly building energy use[J]. Energy and Buildings, 2018, 159: 454- 461
doi: 10.1016/j.enbuild.2017.10.054
|
18 |
WANG Z, HONG T, PIETTE M A Building thermal load prediction through shallow machine learning and deep learning[J]. Applied Energy, 2020, 263: 114683
doi: 10.1016/j.apenergy.2020.114683
|
19 |
DING Y, ZHANG Q, YUAN T, et al Effect of input variables on cooling load prediction accuracy of an office building[J]. Applied Thermal Engineering, 2018, 128: 225- 234
doi: 10.1016/j.applthermaleng.2017.09.007
|
20 |
ARJUNAN P, POOLLA K, MILLER C EnergyStar++: towards more accurate and explanatory building energy benchmarking[J]. Applied Energy, 2020, 276: 115413
doi: 10.1016/j.apenergy.2020.115413
|
21 |
FAN C, XIAO F, YAN C, et al A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning[J]. Applied Energy, 2019, 235: 1551- 1560
doi: 10.1016/j.apenergy.2018.11.081
|
22 |
FRÄMLING K, WESTBERG M, JULLUM M, et al. Comparison of contextual importance and utility with LIME and Shapley values [C]// Proceedings of the 3rd International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems. Cham: Springer, 2021: 39–54.
|
23 |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Association for Computing Machinery, 2017: 4768–4777.
|
24 |
ZHANG C, XUE X, ZHAO Y, et al An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems[J]. Applied Energy, 2019, 253: 113492
doi: 10.1016/j.apenergy.2019.113492
|
25 |
ZHANG L, WEN J A systematic feature selection procedure for short-term data-driven building energy forecasting model development[J]. Energy and Buildings, 2019, 183: 428- 442
doi: 10.1016/j.enbuild.2018.11.010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|