能源与机械工程 |
|
|
|
|
基于小波变换和优化CNN的风电齿轮箱故障诊断 |
温竹鹏1(),陈捷1,2,*(),刘连华1,焦玲玲1 |
1. 南京工业大学 机械与动力工程学院,江苏 南京 211816 2. 江苏省工业装备数字制造及控制技术重点实验室,江苏 南京 211816 |
|
Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN |
Zhu-peng WEN1(),Jie CHEN1,2,*(),Lian-hua LIU1,Ling-ling JIAO1 |
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China 2. Jiangsu Key Laboratory of Digital Manufacturing for Industrial Equipment and Control Technology, Nanjing 211816, China |
引用本文:
温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.020
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1212
|
1 |
DAI J C, YANG X, WEN L Development of wind power industry in China: a comprehensive assessment[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 156- 164
doi: 10.1016/j.rser.2018.08.044
|
2 |
LEI Y G, YANG B, JIANG X W, et al Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587
doi: 10.1016/j.ymssp.2019.106587
|
3 |
张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13. ZHANG Xi-ning, GUO Qing-lin, LIU Shu-yu. Analysis and prospect of deep learning technology and its fault diagnosis application [J]. Journal of Xi'an Jiaotong University. 2020, 54 (12): 1-13.
|
4 |
李恒, 张氢, 秦仙蓉, 等 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37 (19): 124- 131 LI Heng, ZHANG Qing, QIN Xian-rong, et al Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37 (19): 124- 131
|
5 |
陈仁祥, 黄鑫, 杨黎霞, 等 基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J]. 振动工程学报, 2018, 31 (5): 883- 891 CHEN Ren-xiang, HUANG Xin, YANG Li-xia, et al Rolling bearing fault diagnosis based on convolution neural network and discrete wavelet transform[J]. Journal of Vibration Engineering, 2018, 31 (5): 883- 891
|
6 |
ZHAO D Z, WANG T Y, CHU F L Deep convolutional neural network based planet bearing fault classification[J]. Computers in Industry, 2019, 107: 59- 66
doi: 10.1016/j.compind.2019.02.001
|
7 |
LIANG P F, DENG C, WU J, et al Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial net and convolutional neural network[J]. Measurement, 2020, 159: 107768
doi: 10.1016/j.measurement.2020.107768
|
8 |
JIAO J Y, ZHAO M, LIN J, et al A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes[J]. Knowledge-Based Systems, 2018, 160: 237- 250
doi: 10.1016/j.knosys.2018.07.017
|
9 |
JING L Y, ZHAO M, LI P, et al A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1- 10
doi: 10.1016/j.measurement.2017.07.017
|
10 |
WANG S X, CHEN H W A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network[J]. Applied Energy, 2019, 235: 1126- 1140
doi: 10.1016/j.apenergy.2018.09.160
|
11 |
于重重, 宁亚倩, 秦勇, 等 基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测[J]. 仪器仪表学报, 2019, 40 (8): 39- 46 YU Chong-chong, NING Ya-qian, QIN Yong, et al Prediction of rolling bearing state degradation trend based on T-SNE sample entropy and TCN[J]. Chinese Journal of Scientific Instrument, 2019, 40 (8): 39- 46
|
12 |
HAN Y, TANG B P, DENG L An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J]. Computers in Industry, 2019, 107: 50- 58
doi: 10.1016/j.compind.2019.01.012
|
13 |
SHAO S, MCALEER S, YAN R Q, et al Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 2446- 2455
doi: 10.1109/TII.2018.2864759
|
14 |
邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]. 南京: 东南大学, 2019. SHAO Si-yu. Methodologies for fault diagnosis of rotary machine based on deep learning [D]. Nanjing: Southeast University, 2019.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|