机械工程 |
|
|
|
|
基于迁移学习与深度森林的晶圆图缺陷识别 |
沈宗礼(),余建波*() |
同济大学 机械与能源工程学院,上海 201804 |
|
Wafer map defect recognition based on transfer learning and deep forest |
Zong-li SHEN(),Jian-bo YU*() |
School of Mechanical Engineering, Tongji University, Shanghai 201804, China |
1 |
TAO Y, WAY K, SUK J B Detection of spatial defect patterns generated in semiconductor fabrication processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24 (3): 392- 403
doi: 10.1109/TSM.2011.2154870
|
2 |
KIM B, JEONG Y S, TONG S H, et al Step-down spatial randomness test for detecting abnormalities in DRAM wafers with multiple spatial maps[J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29 (1): 57- 65
doi: 10.1109/TSM.2015.2486383
|
3 |
YU J, LU X Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis[J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29 (1): 33- 42
doi: 10.1109/TSM.2015.2497264
|
4 |
SHANKAR N G, ZHONG Z W Defect detection on semiconductor wafer surfaces[J]. Microelectronic Engineering, 2005, 77 (3): 337- 346
|
5 |
LEE S H, KOO H I, CHO N I New automatic defect classification algorithm based on a classification-after-segmentation framework[J]. Journal of Electronic Imaging, 2010, 19 (2): 334- 343
|
6 |
HWANG J Y, KUO W Model-based clustering for integrated circuit yield enhancement[J]. European Journal of Operational Research, 2007, 178 (1): 143- 153
doi: 10.1016/j.ejor.2005.11.032
|
7 |
BALY R, HAJJ H Wafer classification using support vector machines[J]. IEEE Transactions on Semiconductor Manufacturing, 2012, 25 (3): 373- 383
doi: 10.1109/TSM.2012.2196058
|
8 |
XIE L, HUANG R, GU N, et al A novel defect detection and identification method in optical inspection[J]. Neural Computing and Applications, 2014, 24 (7/8): 1953- 1962
doi: 10.1007/s00521-013-1442-7
|
9 |
CHAO L C, TONG L I Wafer defect pattern recognition by multi-class support vector machines by using a novel defect cluster index[J]. Expert Systems with Applications, 2009, 36 (6): 10158- 10167
doi: 10.1016/j.eswa.2009.01.003
|
10 |
ADLY F, ALUSSEIN O, YOO P, et al Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 11 (6): 1267- 1276
|
11 |
KIM B, JEONG Y S, TONG S H, et al A regularized singular value decomposition-based approach for failure pattern classification on fail bit map in a DRAM wafer[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28 (1): 41- 49
doi: 10.1109/TSM.2014.2388192
|
12 |
OOI M P L, SOK H K, KUANG Y C, et al Defect cluster recognition system for fabricated semiconductor wafers[J]. Engineering Applications of Artificial Intelligence, 2013, 26 (3): 1029- 1043
doi: 10.1016/j.engappai.2012.03.016
|
13 |
余建波, 卢笑蕾, 宗卫周 基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别[J]. 自动化学报, 2016, 42 (1): 47- 59 YU Jian-bo, LU Xiao-lei, ZONG Wei-zhou Wafer defect detection and recognition based on local and nonlocal linear discriminant analysis and dynamic ensemble of gaussian mixture models[J]. ACTA Automatica Science, 2016, 42 (1): 47- 59
|
14 |
PIAO M, JIN C H, LEE J Y, et al Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31 (2): 250- 257
doi: 10.1109/TSM.2018.2806931
|
15 |
SAQLAIN M, JARGALSAIKHAN B, LEE J Y A voting ensemble classifier for wafer map defect patterns identification in semiconductor Manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32 (2): 171- 182
doi: 10.1109/TSM.2019.2904306
|
16 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
|
17 |
杨婧, 耿辰, 王海林, 纪建松, 等 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1164- 1170 YANG Jing, GENG Chen, WANG Hai-lin, et al Classification on histological subtypes of lung adenocarcinoma from low-resolution CT images based on DenseNet[J]. Journal of Zhejiang Unversity: Engineering Science, 2019, 53 (6): 1164- 1170
|
18 |
THIRUKOVALLURU R, DIXIT S, SEVAKULA RK et al. Generating feature sets for fault diagnosis using denoising stacked auto-encoder [C] // IEEE International Conference in Prognostics and Health Management (ICPHM). Ottawa: IEEE, 2016: 1-7.
|
19 |
JIANG G, HE H, XIE P, et al Stacked Multilevel-Denoising Autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66: 2391- 2402
doi: 10.1109/TIM.2017.2698738
|
20 |
KRIZHEVSKY A, SUTSKEVER I, HINTON GE. Imagenet classification with deep convolutional neural networks [C] // Advances in Neural Information Processing Systems (NIPS). Lake Tahoe: [s. n.], 2012: 1097–1105.
|
21 |
袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, et al Vehicle category recognition based on deep convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
|
22 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778..
|
24 |
HUANG G, LIU Z, MAATEN L V D et al. Densely connected convolutional networks [C] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu IEEE, 2017: 2261-2260.
|
25 |
DANIEL W, BERND S R, MOSHE S Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection[J]. CIRP Annual Manufacturing Technology, 2016, 65 (1): 417- 420
doi: 10.1016/j.cirp.2016.04.072
|
26 |
NAKAZAWA T, KULKARNI D V Wafer map defect pattern classification and image retrieval using convolutional neural network[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31 (2): 309- 314
doi: 10.1109/TSM.2018.2795466
|
27 |
KYEONG K, KIM H Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31 (3): 395- 402
doi: 10.1109/TSM.2018.2841416
|
28 |
LEE H, KIM Y, KIM C O A deep learning model for robust wafer fault monitoring with sensor measurement noise[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30 (1): 23- 31
doi: 10.1109/TSM.2016.2628865
|
29 |
PAN S J, YANG Q A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359
doi: 10.1109/TKDE.2009.191
|
30 |
张雪松, 庄严, 闫飞, 等 基于迁移学习的类别级物体识别与检测研究与进展[J]. 自动化学报, 2019, 45 (7): 1224- 1243 ZHANG Xue-song, ZHUANG Yan, YAN Fei, et al Status and development of transfer learning based category-Level object recognition and detection[J]. Acta Automatica Sinica, 2019, 45 (7): 1224- 1243
|
31 |
DONAHUE J, JIA Y, VINYALS O et al. DeCAF: a deep convolutional activation feature for generic visual recognition [C] // International Conference on Machine Learning (ICML). Bengjin: [s. n.], 2014: 647-655.
|
32 |
ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks [C] // International Joint Conference on Artificial Intelligence (IJCAI). Melbourne: [s. n.], 2017: 3553-3559.
|
33 |
UTKIN L V, RYABININ M A. A deep Forest for transductive transfer learning by using a consensus measure [C] // Conference on Artificial Intelligence and Natural Language (AINL). Petersburg: Springer, 2017: 194-208.
|
34 |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J, et al. Highway networks [EB/OL].(2015-11-03)[2019-04-30], https://arxiv.org/abs/1505.00387
|
35 |
LIU F T, TING K M, YU Y, et al Spectrum of variable-random trees[J]. Journal of Artificial Intelligence Research, 2008, 32 (1): 355- 384
|
36 |
GUO Y C. Knowledge-enabled short-term load forecasting based on pattern-base using classification & regression tree and support vector regression [C] // Fifth International Conference on Natural Computation. Tianjin: IEEE, 2009: 425-429.
|
37 |
WU M J, JANG J S R, CHEN J L Wafer map failure pattern recognition and similarity ranking for large-scale data sets[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28 (1): 1- 12
doi: 10.1109/TSM.2014.2364237
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|