| 
					
						| 
								
									| 计算机技术 |  |     |  |  
    					|  |  
    					| 基于多级特征并联的轻量级图像语义分割 |  
						| 周登文(  ),田金月,马路遥,孙秀秀 |  
					| 华北电力大学 控制与计算机工程学院,北京 102206 |  
						|  |  
    					| Lightweight image semantic segmentation based on multi-level feature cascaded network |  
						| Deng-wen ZHOU(  ),Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN |  
						| School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.	
																															 
																																Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.	
																															 链接本文: 
																
																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.009
																	   或   
																
																
																http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1516
														    |  
            
									            
									                
																																															
																| 1 | LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39 (4): 640- 651 |  
																| 2 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// European Conference on Computer Vision. Munich: Springer, 2018: 801-818. |  
																| 3 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. International Conference on Learning Representations, 2014(4), 357- 361 |  
																| 4 | LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 5168-5177. |  
																| 5 | ZHAO H, SHI J, QI X, et al Pyramid scene parsing network[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2017(1), 2881- 2890 |  
																| 6 | CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1251-1258. |  
																| 7 | HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2017-04-17]. https://arxiv.org/abs/1704.04861. |  
																| 8 | PIOTR B, VICTOR P. Dense decoder shortcut connections for single-pass semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6596-6605. |  
																| 9 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]// European Conference on Computer Vision. Zurich: Springer, 2014: 818–833. |  
																| 10 | HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37 (9): 1904- 1916 |  
																| 11 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2017-06-17]. https://arxiv.org/abs/1706.05587. |  
																| 12 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. [2015-11-23]. https://arxiv.org/abs/1511.07122. |  
																| 13 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks. conference [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520. |  
																| 14 | RUSSAKOVSKY O, DENG J, SU H, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252 doi: 10.1007/s11263-015-0816-y
 |  
																| 15 | CIRESAN D, GIUSTI A, GAMBARDELLA L M, et al. Deep neural networks segment neuronal membranes in electron microscopy images [C]// Advances in Neural Information Processing Systems. Lake Tahoe: MIT Press, 2012: 2843-2851. |  
																| 16 | FARABET C, COUPRIE C, NAJMAN L, et al Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1915- 1929 doi: 10.1109/TPAMI.2012.231
 |  
																| 17 | EVERINGHAM M, ESLAMI S M A, VAN-GOOI L, et al The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136 doi: 10.1007/s11263-014-0733-5
 |  
																| 18 | CORDTS M, OMRAN M, RANMOS S. The cityscapes dataset for semantic urban scene understanding [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223. |  
																| 19 | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation [EB/OL]. [2016-06-07]. https://arxiv.org/abs/1606.02147. |  
																| 20 | TREML M, ARJONA-MEDINA J, UNTERTHINER T, et al. Speeding up semantic segmentation for autonomous driving [C]// Neural Information Processing Systems Workshop. Barcelona: MIT Press, 2016. |  
																| 21 | FORREST N L, SONG H, MATTHEW W, et al. SqueezeNet: alexnet-level accuracy with 50x fewer parameters and 1mb model size [EB/OL]. [2016-02-24]. https://arxiv.org/abs/1602.07360. |  
																| 22 | SERCAN T, JANNE H. An efficient solution for semantic segmentation_ShuffleNet V2 with atrous separable convolutions [EB/OL]. [2019-02-20]. https://arxiv.org/abs/1902.07476. |  
																| 23 | ZHAO H, QI X, SHEN X, et al. ICNET for real-time semantic segmentation on high-resolution images [EB/OL]. [2017-04-27]. https://arxiv.org/abs/1704.08545. |  
																| 24 | BADRINARAYANAN V, KENDALL A, CIPOLLA R SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495 doi: 10.1109/TPAMI.2017.2701373
 |  
																| 25 | ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks [C]// IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537. |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |