计算机技术 |
|
|
|
|
基于多级特征并联的轻量级图像语义分割 |
周登文( ),田金月,马路遥,孙秀秀 |
华北电力大学 控制与计算机工程学院,北京 102206 |
|
Lightweight image semantic segmentation based on multi-level feature cascaded network |
Deng-wen ZHOU( ),Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN |
School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China |
引用本文:
周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.009
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1516
|
1 |
LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39 (4): 640- 651
|
2 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// European Conference on Computer Vision. Munich: Springer, 2018: 801-818.
|
3 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. International Conference on Learning Representations, 2014(4), 357- 361
|
4 |
LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 5168-5177.
|
5 |
ZHAO H, SHI J, QI X, et al Pyramid scene parsing network[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2017(1), 2881- 2890
|
6 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1251-1258.
|
7 |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2017-04-17]. https://arxiv.org/abs/1704.04861.
|
8 |
PIOTR B, VICTOR P. Dense decoder shortcut connections for single-pass semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6596-6605.
|
9 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]// European Conference on Computer Vision. Zurich: Springer, 2014: 818–833.
|
10 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37 (9): 1904- 1916
|
11 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2017-06-17]. https://arxiv.org/abs/1706.05587.
|
12 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. [2015-11-23]. https://arxiv.org/abs/1511.07122.
|
13 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks. conference [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
14 |
RUSSAKOVSKY O, DENG J, SU H, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
doi: 10.1007/s11263-015-0816-y
|
15 |
CIRESAN D, GIUSTI A, GAMBARDELLA L M, et al. Deep neural networks segment neuronal membranes in electron microscopy images [C]// Advances in Neural Information Processing Systems. Lake Tahoe: MIT Press, 2012: 2843-2851.
|
16 |
FARABET C, COUPRIE C, NAJMAN L, et al Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1915- 1929
doi: 10.1109/TPAMI.2012.231
|
17 |
EVERINGHAM M, ESLAMI S M A, VAN-GOOI L, et al The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136
doi: 10.1007/s11263-014-0733-5
|
18 |
CORDTS M, OMRAN M, RANMOS S. The cityscapes dataset for semantic urban scene understanding [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223.
|
19 |
PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation [EB/OL]. [2016-06-07]. https://arxiv.org/abs/1606.02147.
|
20 |
TREML M, ARJONA-MEDINA J, UNTERTHINER T, et al. Speeding up semantic segmentation for autonomous driving [C]// Neural Information Processing Systems Workshop. Barcelona: MIT Press, 2016.
|
21 |
FORREST N L, SONG H, MATTHEW W, et al. SqueezeNet: alexnet-level accuracy with 50x fewer parameters and 1mb model size [EB/OL]. [2016-02-24]. https://arxiv.org/abs/1602.07360.
|
22 |
SERCAN T, JANNE H. An efficient solution for semantic segmentation_ShuffleNet V2 with atrous separable convolutions [EB/OL]. [2019-02-20]. https://arxiv.org/abs/1902.07476.
|
23 |
ZHAO H, QI X, SHEN X, et al. ICNET for real-time semantic segmentation on high-resolution images [EB/OL]. [2017-04-27]. https://arxiv.org/abs/1704.08545.
|
24 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2017.2701373
|
25 |
ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks [C]// IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|