计算机技术 |
|
|
|
|
基于图卷积神经网络的城市交通态势预测算法 |
闫旭( ),范晓亮*( ),郑传潘,臧彧,王程,程明,陈龙彪 |
厦门大学 信息学院,福建 厦门 361000 |
|
Urban traffic flow prediction algorithm based on graph convolutional neural networks |
Xu YAN( ),Xiao-liang FAN*( ),Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN |
School of Informatics, Xiamen University, Xiamen 361000, China |
引用本文:
闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.011
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1147
|
1 |
刘静, 关伟 交通流预测方法综述[J]. 公路交通科技, 2004, 21 (3): 82- 85 LIU Jing, GUAN Wei Overview of traffic flow prediction methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (3): 82- 85
doi: 10.3969/j.issn.1002-0268.2004.03.022
|
2 |
李德仁, 姚远, 邵振峰 智慧城市中的大数据[J]. 武汉大学学报: 信息科学版, 2014, 58 (6): 631- 640 LI De-ren, YAO Yuan, SHAO Zhen-feng Big data in smart cities[J]. Journal of Wuhan University: Information Science Edition, 2014, 58 (6): 631- 640
|
3 |
陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究: 跨学科视野中的工程, 2014, 6 (1): 6- 19 LU Hua-pu, LI Rui-min Development status and trends of urban intelligent transportation systems[J]. Engineering Research: Engineering in Interdisciplinary Perspectives, 2014, 6 (1): 6- 19
|
4 |
HAJIMOLAHOSEINI H, AMIRFATTAHI R, SOLTANIAN-ZADEH H Robust vehicle tracking algorithm for nighttime videos captured by fixed cameras in highly reflective environments[J]. IET Computer Vision, 2014, 8 (6): 535- 544
|
5 |
SEN R, MAURYA A, RAMAN B, et al. Kyun queue: a sensor network system to monitor road traffic queues [C] // Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. Toronto: ACM, 2012: 127-140.
|
6 |
CHEN C, PETTY K, SKABARDONIS A, et al Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record, 2001, 1748 (1): 96- 102
doi: 10.3141/1748-12
|
7 |
VLAHOGIANNI E I. Computational intelligence and optimization for transportation big data: challenges and opportunities [M] // Engineering and Applied Sciences Optimization. Cham: Springer, 2015: 107-128.
|
8 |
MAKRIDAKIS S, HIBON M ARMA models and the Box–Jenkins methodology[J]. Journal of Forecasting, 1997, 16 (3): 147- 163
|
9 |
HAMED M M, Al-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
|
10 |
SMOLA A J, SCHOLKOPF B A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14 (3): 199- 222
|
11 |
HUANG W, SONG G, HONG H, et al Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2191- 2201
doi: 10.1109/TITS.2014.2311123
|
12 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
13 |
CHO K, VAN MERRIENBOER B, GULVEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv Preprint, arXiv: 1406.1078, 2014.
|
14 |
CUI Z, KE R, WANG Y. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction [J]. arXiv Preprint, arXiv: 1801.02143, 2018.
|
15 |
ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction [C] // Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017.
|
16 |
LECUN Y, BOSER B, DENKER J S, et al Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1 (4): 541- 551
|
17 |
MA X L, DAI Z, HE Z B, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
|
18 |
SCARSELLI F, GORI M, TSOI A C, et al The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20 (1): 61- 80
|
19 |
ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: A review of methods and applications [J]. arXiv Preprint, arXiv: 1812.08434, 2018.
|
20 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [J]. arXiv Preprint, arXiv: 1707.01926, 2017.
|
21 |
YU, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting [J]. arXiv Preprint. arXiv: 1709.04875, 2017.
|
22 |
CUI Z, HENRICKSON K, KE R, et al Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,
|
23 |
GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 922-929.
|
24 |
ZHANG N, GUAN X, CAO J, et al. A hybrid traffic speed forecasting approach integrating wavelet transform and motif-based graph convolutional recurrent neural network [J]. arXiv Preprint. arXiv: 1904.06656, 2019.
|
25 |
SUN J, ZHANG J, LI Q, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks [J]. arXiv Preprint. arXiv: 1903.07789, 2019.
|
26 |
CHEN C, LI K, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction [C] // Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33: 485-492.
|
27 |
ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction [J]. arXiv Preprint, arXiv: 1911.08415, 2019.
|
28 |
SHUMAN D I, NARANG S K, FROSSARD P, et al The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98
doi: 10.1109/MSP.2012.2235192
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|