计算机技术 |
|
|
|
|
用于交通流预测的自适应图生成跳跃网络 |
黄靖1( ),钟书远1,文元桥2,罗坤1 |
1. 武汉理工大学 计算机科学与技术学院,湖北 武汉 430063 2. 武汉理工大学 智能交通系统研究中心,湖北 武汉 430063 |
|
Adaptive graph generation jump network for traffic flow prediction |
Jing HUANG1( ),Shu-yuan ZHONG1,Yuan-qiao WEN2,Kun LUO1 |
1. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China 2. Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan 430063, China |
引用本文:
黄靖,钟书远,文元桥,罗坤. 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报(工学版), 2021, 55(10): 1825-1833.
Jing HUANG,Shu-yuan ZHONG,Yuan-qiao WEN,Kun LUO. Adaptive graph generation jump network for traffic flow prediction. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1825-1833.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.004
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1825
|
1 |
WILLIAMS B M, HOEL L A Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129 (6): 664- 672
doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
|
2 |
HAMED M M, AL-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
|
3 |
ZIVOT E, WANG J. Vector autoregressive models for multivariate time series [M]// Modeling financial time series with S-PLUS®. New York: Springer, 2006: 385-429.
|
4 |
FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
|
5 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1707.01926.pdf.
|
6 |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1709.04875.pdf.
|
7 |
GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 922-929.
|
8 |
BAI L, YAO L, KANHERE S S, et al. Passenger demand forecasting with multi-task convolutional recurrent neural networks[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2019: 29-42.
|
9 |
GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 3656-3663.
|
10 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1609.02907.pdf.
|
11 |
XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1806.03536.pdf.
|
12 |
AHMED M S, COOK A R Analysis of freeway traffic time-series data by using Box-Jenkins techniques[J]. Transportation Research Record Journal of the Transportation Research Board, 1979, 773 (722): 1- 9
|
13 |
PARK D, RILETT L R Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 1999, 14 (5): 357- 367
doi: 10.1111/0885-9507.00154
|
14 |
HUANG W, SONG G, HONG H, et al Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2191- 2201
doi: 10.1109/TITS.2014.2311123
|
15 |
WU Y, TAN H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1612.01022.pdf.
|
16 |
YU H, WU Z, WANG S, et al Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17 (7): 1501
doi: 10.3390/s17071501
|
17 |
ZHAO L, SONG Y, ZHANG C, et al T-gcn: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858
|
18 |
冯宁, 郭晟楠, 宋超, 等 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30 (3): 759- 769 FENG Ning, GOU Sheng-nan, SONG Chao, et al Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30 (3): 759- 769
|
19 |
ZHENG C, FAN X, WANG C, et al. Gman: a graph multi-attention network for traffic prediction [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 1234-1241.
|
20 |
CHEN W, CHEN L, XIE Y, et al. Multi-range attentive bicomponent graph convolutional network for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/ftp/arxiv/papers/1911/1911.12093.pdf.
|
21 |
FANG S, ZHANG Q, MENG G, et al. GSTNet: Global spatial-temporal network for traffic flow prediction [C]// 28th International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann, 2019: 2286-2293.
|
22 |
BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/2007.02842.pdf.
|
23 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
24 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1502.03167.pdf.
|
25 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
26 |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|