Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1825-1833    DOI: 10.3785/j.issn.1008-973X.2021.10.004
计算机技术     
用于交通流预测的自适应图生成跳跃网络
黄靖1(),钟书远1,文元桥2,罗坤1
1. 武汉理工大学 计算机科学与技术学院,湖北 武汉 430063
2. 武汉理工大学 智能交通系统研究中心,湖北 武汉 430063
Adaptive graph generation jump network for traffic flow prediction
Jing HUANG1(),Shu-yuan ZHONG1,Yuan-qiao WEN2,Kun LUO1
1. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China
2. Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan 430063, China
 全文: PDF(1071 KB)   HTML
摘要:

针对交通流数据复杂的时空相关性,提出新的基于深度学习的自适应图生成跳跃网络(AG-JNet模型). 该模型由2个时空模块组成,每个时空模块分为2支,分别对时间相关性和空间相关性建模. 时间建模采用多层扩张卷积,在增大时间维度感受野的同时降低计算开销. 空间建模采用自适应图生成卷积,在不依赖图的固定结构下提取空间相关性. 在时间和空间的建模中均采用跳跃连接堆叠多层,以提升模型的深层特征提取能力,将时间特征和空间特征进行门控融合,提取出用于交通流量预测的时空特征. 在2个真实数据集PeMSD4和PeMSD8上的实验表明,AG-JNet在不同指标下取得了优异的性能.

关键词: 交通流量预测时空相关性自适应图生成扩张卷积跳跃连接    
Abstract:

A novel deep-learning-based model, adaptive graph generation jump network (AG-JNet), was proposed to solve the problem that traffic flow data has complex spatial-temporal correlations. The model consisted of two spatial-temporal modules, each of which was divided into two critical components, i.e., temporal correlation block and spatial correlation block. The temporal correlation block used multi-layer dilated convolution to increase the receptive field in temporal dimension while reducing computational cost. The spatial correlation block used adaptive graph generation convolution, which did not rely on the fixed graph structure to extract spatial correlation. Stacking multiple layers by jumping connections was used in both temporal and spatial modeling in order to improve the ability of extracting deep features of the model. The temporal feature and the spatial feature were fused by gated mechanism to obtain the spatial-temporal features for traffic flow prediction. Extensive experiments were conducted on two public datasets, i.e., PeMSD4 and PeMSD8. The experimental results showed that the AG-JNet achieved excellent performance under different traffic indicators.

Key words: traffic flow prediction    spatial-temporal correlation    adaptive graph generation    dilated convolution    jumping connection
收稿日期: 2020-12-10 出版日期: 2021-10-27
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(52072287);武汉理工大学自主创新研究基金资助项目(205210016)
作者简介: 黄靖(1977—),男,副教授,从事大数据分析、计算机视觉的研究. orcid.org/0000-0002-3294-5725. E-mail: huangjing@whut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄靖
钟书远
文元桥
罗坤

引用本文:

黄靖,钟书远,文元桥,罗坤. 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报(工学版), 2021, 55(10): 1825-1833.

Jing HUANG,Shu-yuan ZHONG,Yuan-qiao WEN,Kun LUO. Adaptive graph generation jump network for traffic flow prediction. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1825-1833.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.004        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1825

图 1  自适应图生成跳跃网络的整体结构
图 2  时空模块的详细结构图
图 3  2层图卷积
图 4  在时间维度上的扩张卷积
图 5  门控融合
模型 PeMSD4 (30/60 min) PeMSD8 (30/60 min)
MAE RMSE MAE RMSE
HA 31.46/38.24 44.94/54.31 26.04/31.94 36.99/45.16
T-GCN 22.97/24.8 34.74/37.09 20.17/21.52 29.03/31.19
STGCN 22.85/25.8 33.62/37.68 19.85/22.27 28.25/31.52
ASTGCN 21.69/23.14 33.72/36.11 17.67/19.11 27.59/30.27
AGCRN 18.72/19.74 30.65/32.57 15.00/16.58 23.69/26.19
AG-JNet 18.53/20.08 28.19/30.43 15.15/16.12 22.80/24.59
表 1  不同方法在2个数据集上的性能比较
图 6  相关方法在不同预测时长下的性能对比
模型 参数规模 ttr /s tt /s RMSE
T-GCN 13452 10.53 0.32 31.19
STGCN 99124 6.45 0.49 31.52
ASTGCN 560604 47.19 7.41 30.27
AGCRN 150112 24.15 3.32 26.19
AG-JNet 241079 18.27 1.84 24.59
表 2  不同交通流预测模型的时间开销对比
图 7  消融实验结果
图 8  平滑度量的对比
1 WILLIAMS B M, HOEL L A Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129 (6): 664- 672
doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
2 HAMED M M, AL-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
3 ZIVOT E, WANG J. Vector autoregressive models for multivariate time series [M]// Modeling financial time series with S-PLUS®. New York: Springer, 2006: 385-429.
4 FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
5 LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1707.01926.pdf.
6 YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1709.04875.pdf.
7 GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 922-929.
8 BAI L, YAO L, KANHERE S S, et al. Passenger demand forecasting with multi-task convolutional recurrent neural networks[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2019: 29-42.
9 GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 3656-3663.
10 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1609.02907.pdf.
11 XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1806.03536.pdf.
12 AHMED M S, COOK A R Analysis of freeway traffic time-series data by using Box-Jenkins techniques[J]. Transportation Research Record Journal of the Transportation Research Board, 1979, 773 (722): 1- 9
13 PARK D, RILETT L R Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 1999, 14 (5): 357- 367
doi: 10.1111/0885-9507.00154
14 HUANG W, SONG G, HONG H, et al Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2191- 2201
doi: 10.1109/TITS.2014.2311123
15 WU Y, TAN H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1612.01022.pdf.
16 YU H, WU Z, WANG S, et al Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17 (7): 1501
doi: 10.3390/s17071501
17 ZHAO L, SONG Y, ZHANG C, et al T-gcn: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858
18 冯宁, 郭晟楠, 宋超, 等 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30 (3): 759- 769
FENG Ning, GOU Sheng-nan, SONG Chao, et al Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30 (3): 759- 769
19 ZHENG C, FAN X, WANG C, et al. Gman: a graph multi-attention network for traffic prediction [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 1234-1241.
20 CHEN W, CHEN L, XIE Y, et al. Multi-range attentive bicomponent graph convolutional network for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/ftp/arxiv/papers/1911/1911.12093.pdf.
21 FANG S, ZHANG Q, MENG G, et al. GSTNet: Global spatial-temporal network for traffic flow prediction [C]// 28th International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann, 2019: 2286-2293.
22 BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/2007.02842.pdf.
23 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
24 IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [EB/OL]. [2020-10-10]. https://arxiv.org/pdf/1502.03167.pdf.
25 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
26 HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
[1] 陈玉,戴华,李博涵,杨庚. 面向移动对象的松散型传染模式挖掘方法[J]. 浙江大学学报(工学版), 2022, 56(2): 280-287.
[2] 林鹤翔,乔连鹏,袁野,王国仁. 基于GPU的大图数据上的关键字检索算法[J]. 浙江大学学报(工学版), 2022, 56(2): 271-279.
[3] 黄新宇,游帆,张沛,张昭,张柏礼,吕建华,徐立臻. 基于多分类及特征融合的静默活体检测算法[J]. 浙江大学学报(工学版), 2022, 56(2): 263-270.
[4] 梁秀波,吴俊涵,赵昱,尹可挺. 区块链数据安全管理和隐私保护技术研究综述[J]. 浙江大学学报(工学版), 2022, 56(1): 1-15.
[5] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
[6] 刘雪娇,殷一丹,陈蔚,夏莹杰,许佳丽,韩立东. 基于区块链的车联网数据安全共享方案[J]. 浙江大学学报(工学版), 2021, 55(5): 957-965.
[7] 尤明辉,殷亚凤,谢磊,陆桑璐. 基于行为感知的用户画像技术[J]. 浙江大学学报(工学版), 2021, 55(4): 608-614.
[8] 张玉琪,郭斌,丁亚三,刘思聪,於志文. 社交网络假消息辟谣作用机理[J]. 浙江大学学报(工学版), 2021, 55(4): 615-625.
[9] 徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
[10] 许豪灿,李基拓,陆国栋. 由LeNet-5从单张着装图像重建三维人体[J]. 浙江大学学报(工学版), 2021, 55(1): 153-161.
[11] 康庄,杨杰,郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版), 2020, 54(7): 1272-1280.
[12] 闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
[13] 柯懂湘,潘丽敏,罗森林,张寒青. 基于随机森林算法的Android恶意行为识别与分类方法[J]. 浙江大学学报(工学版), 2019, 53(10): 2013-2023.
[14] 吴奇龙,於志文,路新江,郭斌. 城市兴趣点演化规律的可预测性分析[J]. 浙江大学学报(工学版), 2019, 53(9): 1768-1778.
[15] 汪子龙,王柱,於志文,郭斌,周兴社. 多源数据跨国人口迁移预测[J]. 浙江大学学报(工学版), 2019, 53(9): 1759-1767.