自动化技术、计算机技术 |
|
|
|
|
基于机器视觉的垃圾自动分类系统设计 |
康庄(),杨杰*(),郭濠奇 |
江西理工大学 电气工程与自动化学院,江西 赣州 341000 |
|
Automatic garbage classification system based on machine vision |
Zhuang KANG(),Jie YANG*(),Hao-qi GUO |
School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China |
1 |
王佳佳, 赵娜娜, 李金惠 中国海洋微塑料污染现状与防治建议[J]. 中国环境科学, 2019, 39 (7): 3056- 3063 WANG Jia-jia, ZHAO Na-na, LI Jin-hui Present status and prevention of marine microplastics pollution in China[J]. China Environmental Science, 2019, 39 (7): 3056- 3063
doi: 10.3969/j.issn.1000-6923.2019.07.043
|
2 |
李文瀚, 马增益, 杨恩权, 等 循环流化床垃圾焚烧系统电除尘飞灰和布袋飞灰特性研究[J]. 中国电机工程学报, 2019, 39 (5): 1397- 1405 LI Wen-han, MA Zeng-yi, YANG En-quan, et al Study on characteristics of electric dust removal fly ash and bag fly ash in circulating fluidized bed waste incineration system[J]. Chinese Journal of Electrical Engineering, 2019, 39 (5): 1397- 1405
|
3 |
任越, 杨俊杰, 曹洪军, 等 农村生活垃圾全自动全组分分类处理技术与应用[J]. 农业工程学报, 2019, 35 (4): 248- 254 REN Yue, YANG Jun-jie, CAO Hong-jun, et al All components resourcing system of rural garbage based on post-gather automatic sorting and disposal technology and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (4): 248- 254
doi: 10.11975/j.issn.1002-6819.2019.04.031
|
4 |
赵冬娥, 吴瑞, 赵宝国, 等 高光谱成像的垃圾分类识别研究[J]. 光谱学与光谱分析, 2019, 39 (3): 921- 926 ZHAO Dong-e, WU Rui, ZHAO Bao-guo, et al Research on garbage classification and recognition of hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39 (3): 921- 926
|
5 |
潘鹏, 胡运峰, 秦金志, 等 一种基于NB-IOT的智能垃圾桶[J]. 科技风, 2019, (1): 11 PAN Peng, HU Yun-feng, QIN Jin-zhi, et al A smart trash can based on NB-IOT[J]. Science and Technology, 2019, (1): 11
|
6 |
陈景翼, 李春燕, 盛宇彪, 等 基于GPRS通讯的智能垃圾桶硬件电路设计[J]. 电工技术, 2019, (2): 18- 20 CHEN Jing-yi, LI Chun-yan, SHENG Yu-biao, et al Intelligent hardware design of intelligent trash can based on GPRS communication[J]. Electric Engineering, 2019, (2): 18- 20
doi: 10.3969/j.issn.1002-1388.2019.02.008
|
7 |
白桂峰 基于STC89C52的家用智能垃圾桶设计[J]. 自动化与仪表, 2019, 34 (3): 97- 100 BAI Gui-feng Design of household intelligent wastebin based on STC89C52[J]. Automation and Instrumentation, 2019, 34 (3): 97- 100
|
8 |
SALIMI I, DEWANTARA B S B, WIBOWO I K. Visual-based trash detection and classification system for smart trash bin robot [C]//2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing. Bali: IEEE, 2018: 378-383.
|
9 |
SUDHA S, VIDHYALAKSHMI M, PAVITHRA K, et al. An automatic classification method for environment: friendly waste segregation using deep learning [C]//2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development. Chennai: IEEE, 2016: 65-70.
|
10 |
SETIAWAN W, WAHYUDIN A, WIDIANTO G R. The use of scale invariant feature transform (SIFT) algorithms to identification garbage images based on product label [C]//2017 3rd International Conference on Science in Information Technology. Bandung: IEEE, 2017: 336-341.
|
11 |
PAPALITSAS C, ANDRONIKOS T Unconventional GVNS for solving the garbage collection problem with time windows[J]. Technologies, 2019, 7 (3): 61
doi: 10.3390/technologies7030061
|
12 |
JAID JIM A A, KADIR R, MAMUN M A A, et al A noble proposal for Internet of garbage bins (IoGB)[J]. Smart Citie, 2019, 2 (2): 214- 229
doi: 10.3390/smartcities2020014
|
13 |
党宇, 张继贤, 邓喀中, 等 基于深度学习AlexNet的遥感影像地表覆盖分类评价研究[J]. 地球信息科学学报, 2017, 19 (11): 1530- 1537 DANG Yu, ZHANG Ji-xian, DENG Ka-zhong, et al Study on the evaluation of land cover classification using remote sensing images based on AlexNet[J]. Journal of Geo Information Science, 2017, 19 (11): 1530- 1537
|
14 |
李余兴, 李亚安, 陈晓, 等 基于VMD和SVM的舰船辐射噪声特征提取及分类识别[J]. 国防科技大学学报, 2019, 41 (1): 89- 94 LI Yu-xing, LI Ya-an, CHEN Xiao, et al Feature extraction and classification identification of ship radiated noise based on VMD and SVM[J]. Journal of National University of Defense Technology, 2019, 41 (1): 89- 94
doi: 10.11887/j.cn.201901013
|
15 |
周玉阳, 秦科. 改进的VGG网络可提升年龄与性别预测准确率[J/OL]. 计算机工程与应用, 2019, 55(18): 173-179. [2019-08-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20181108.1712.009.html. ZHOU Yu-yang, QIN Ke. Improved VGG network can improve the accuracy of age and gender predicttion [J/OL]. Computer Engineering and Application, 2019, 55(18): 173-179. [2019-08-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20181108.1712.009.html.
|
16 |
ZENG D, ZHANG S, CHEN F, et al Multi-scale CNN based garbage detection of airborne hyperspectral data[J]. IEEE Access, 2019, (7): 104514- 104527
|
17 |
RABANO S L, CABATUAN M K, SYBINGCO E, et al. Common garbage classification using mobilenet [C]//2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management. Baguio City, Philippines: IEEE, 2018: 1-4.
|
18 |
XIONG J, CUI W, ZHANG W, et al. YOLOv3-darknet with adaptive clustering anchor box for intelligent dry and wet garbage identification and classification [C]//2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2019: 80-84.
|
19 |
向伟, 史晋芳, 刘桂华, 等 改进CaffeNet模型在水面垃圾识别中的应用[J]. 传感器与微系统, 2019, 38 (8): 150- 152 XIANG Wei, SHI Jin-fang, LIU Gui-hua, et al Application of improved CaffeNet model in water surface garbage identification[J]. Transducer and Microsystem Technologies, 2019, 38 (8): 150- 152
|
20 |
廖祥文, 吴晓静, 桂林, 等 结合表示学习和迁移学习的跨领域情感分类[J]. 北京大学学报: 自然科学版, 2019, 55 (1): 37- 46 LIAO Xiang-wen, WU Xiao-jing, GUI Lin, et al Cross-domain sentiment classification combined with learning and migration learning[J]. Journal of Peking University: Natural Science, 2019, 55 (1): 37- 46
|
21 |
张野, 李明超, 韩帅 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34 (2): 333- 342 ZHANG Ye, LI Ming-chao, HAN Shuai Automatic identification and classification in lithology based on deep learning in rock images[J]. Acta Petrologica Sinica, 2018, 34 (2): 333- 342
|
22 |
李冠东, 张春菊, 王铭恺 卷积神经网络迁移的高分影像场景分类学习[J]. 测绘科学, 2019, 44 (4): 116- 123 LI Guan-dong, ZHANG Chun-ju, WANG Ming-kai Classification learning of high score image scenes based on convolutional neural network migration[J]. Science and Mapping Science, 2019, 44 (4): 116- 123
|
23 |
GUO W, LI W, YANG B, et al A novel noninvasive and cost-effective handheld detector on soluble solids content of fruits[J]. Journal of Food Engineering, 2019, 257: 1- 9
doi: 10.1016/j.jfoodeng.2019.03.022
|
24 |
BEASON R D, RIESCH R, KORICHEVA J AURITA: an affo-rdable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies[J]. Bioacoustics, 2018, 28: 381- 396
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|