计算机与控制工程 |
|
|
|
|
基于GPU的大图数据上的关键字检索算法 |
林鹤翔1( ),乔连鹏2,袁野1,*( ),王国仁1 |
1. 北京理工大学 计算机学院,北京 100081 2. 东北大学 计算机科学与工程学院,辽宁 沈阳 110169 |
|
Keyword search algorithm of large graph based on GPU |
He-xiang LIN1( ),Lian-peng QIAO2,Ye YUAN1,*( ),Guo-ren WANG1 |
1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China 2. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
引用本文:
林鹤翔,乔连鹏,袁野,王国仁. 基于GPU的大图数据上的关键字检索算法[J]. 浙江大学学报(工学版), 2022, 56(2): 271-279.
He-xiang LIN,Lian-peng QIAO,Ye YUAN,Guo-ren WANG. Keyword search algorithm of large graph based on GPU. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 271-279.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.007
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I2/271
|
1 |
DING B, YU J X, WANG S, et al. Finding top-k min-cost connected trees in databases [C]// 2007 IEEE 23rd International Conference on Data Engineering. Istanbul: IEEE, 2007: 836-845.
|
2 |
KARGAR M, AN A Keyword search in graphs: finding r-cliques[J]. Proceedings of the VLDB Endowment, 2011, 4 (10): 681- 692
doi: 10.14778/2021017.2021025
|
3 |
BHALOTIA G, HULGERI A, NAKHE C, et al. Keyword searching and browsing in databases using BANKS [C]// Proceedings of 18th International Conference on Data Engineering. San Jose: IEEE, 2002: 431-440.
|
4 |
HE H, WANG H, YANG J, et al. Blinks: ranked keyword searches on graphs [C]// Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing: ACM, 2007: 305-316.
|
5 |
WANG Y, DAVIDSON A, PAN Y, et al. Gunrock: a high-performance graph processing library on the GPU [C]// Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Barcelona: ACM, 2016: 1-12.
|
6 |
PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the web[R].[s.l.]: Stanford InfoLab, 1999.
|
7 |
FLOYD R W Algorithm 97: shortest path[J]. Communications of the ACM, 1962, 5 (6): 345
|
8 |
HARISH P, NARAYANAN P J. Accelerating large graph algorithms on the GPU using CUDA [C]// International Conference on High-Performance Computing. Goa: Springer, 2007: 197-208.
|
9 |
BELLMAN R On a routing problem[J]. Quarterly of Applied Mathematics, 1958, 16 (1): 87- 90
doi: 10.1090/qam/102435
|
10 |
FORD JR L R. Network flow theory [R]. [s.l.]: Rand Corp, 1956.
|
11 |
YANG D, ZHANG D, YU Z, et al. Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs [C]// Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Zurich: ACM, 2013: 479-488.
|
12 |
YANG D, ZHANG D, YU Z, et al. A sentiment-enhanced personalized location recommendation system [C]// Proceedings of the 24th ACM Conference on Hypertext and Social Media. Paris: ACM, 2013: 119-128.
|
13 |
LEY M DBLP: some lessons learned[J]. Proceedings of the VLDB Endowment, 2009, 2 (2): 1493- 1500
doi: 10.14778/1687553.1687577
|
14 |
BAST H, BÄURLE F, BUCHHOLD B, et al. Easy access to the freebase dataset [C]// Proceedings of the 23rd International Conference on World Wide Web. Seoul: ACM, 2014: 95-98.
|
15 |
AGGARWAL C C, WANG H X. Managing and mining graph data [M]. New York: Springer, 2010.
|
16 |
AGRAWAL S, CHAUDHURI S, DAS G. DBXplorer: a system for keyword-based search over relational databases [C]// Proceedings of 18th International Conference on Data Engineering. San Jose: IEEE, 2002: 5-16.
|
17 |
DOSSO D. A keyword search and citation system for RDF graphs [C]// FDIA. Milan: [s.n.], 2019: 23-28.
|
18 |
GHANBARPOUR A, NADERI H Survey on ranking functions in keyword search over graph-structured data[J]. Journal of Universal Computer Science, 2019, 25 (4): 361- 389
|
19 |
YANG Y, AGRAWAL D, JAGADISH H V, et al. An efficient parallel keyword search engine on knowledge graphs [C]// 2019 IEEE 35th International Conference on Data Engineering. Macao: IEEE, 2019: 338-349.
|
20 |
XIAO T, HAN D, HE J, et al Multi-keyword ranked search based on mapping set matching in cloud ciphertext storage system[J]. Connection Science, 2021, 33 (1): 95- 112
doi: 10.1080/09540091.2020.1753175
|
21 |
HU X, DUAN J, DANG D Natural language question answering over knowledge graph: the marriage of SPARQL query and keyword search[J]. Knowledge and Information Systems, 2021, 63 (4): 819- 844
doi: 10.1007/s10115-020-01534-4
|
22 |
FUNG J, TANG F, MANN S. Mediated reality using computer graphics hardware for computer vision [C]// Proceedings of the 6th International Symposium on Wearable Computers. Seattle: IEEE, 2002: 83-89.
|
23 |
FUNG J, MANN S. Computer vision signal processing on graphics processing units [C]// 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal: IEEE, 2004, 5: V-93.
|
24 |
CHITTY D M. A data parallel approach to genetic programming using programmable graphics hardware [C]// Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. London: ACM, 2007: 1566-1573.
|
25 |
SOMAN J, KISHORE K, NARAYANAN P J. A fast GPU algorithm for graph connectivity [C]// 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum. Atlanta: IEEE, 2010: 1-8.
|
26 |
VINEET V, NARAYANAN P J. CUDA cuts: fast graph cuts on the GPU [C]// 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Anchorage: IEEE, 2008: 1-8.
|
27 |
HAWICK K A, LEIST A, PLAYNE D P Parallel graph component labelling with GPUs and CUDA[J]. Parallel Computing, 2010, 36 (12): 655- 678
doi: 10.1016/j.parco.2010.07.002
|
28 |
OSAMA M, TRUONG M, YANG C, et al. Graph coloring on the GPU [C]// 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Rio de Janeiro: IEEE, 2019: 231-240.
|
29 |
AWAD M A, ASHKIANI S, PORUMBESCU S D, et al. Dynamic graphs on the GPU [C]// 2020 IEEE International Parallel and Distributed Processing Symposium. New Orleans: IEEE, 2020: 739-748.
|
30 |
ZHOU C, ZHANG T High performance graph data imputation on multiple GPUs[J]. Future Internet, 2021, 13 (2): 36
doi: 10.3390/fi13020036
|
31 |
MIN S W, WU K, HUANG S, et al. PyTorch-direct: enabling GPU centric data access for very large graph neural network training with irregular accesses[EB/OL]. [2021-06-01]. https://arxiv.org/abs/2101.07956.
|
32 |
KHORASANI F, VORA K, GUPTA R, et al. CuSha: vertex-centric graph processing on GPUs [C]// Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing. Vancouver BC: ACM, 2014: 239-252.
|
33 |
ZHU H, HE L, FU S, et al Wolfpath: accelerating iterative traversing-based graph processing algorithms on GPU[J]. International Journal of Parallel Programming, 2019, 47 (4): 644- 667
doi: 10.1007/s10766-017-0533-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|