计算机与控制工程 |
|
|
|
|
基于多分类及特征融合的静默活体检测算法 |
黄新宇1(),游帆1,张沛2,3,张昭2,3,张柏礼1,*(),吕建华1,徐立臻1 |
1. 东南大学 计算机科学与技术学院,江苏 南京 211189 2. 智能电网保护和运行控制国家重点实验室,江苏 南京 211189 3. 南瑞集团,江苏 南京 211189 |
|
Silent liveness detection algorithm based on multi classification and feature fusion network |
Xin-yu HUANG1(),Fan YOU1,Pei ZHANG2,3,Zhao ZHANG2,3,Bai-li ZHANG1,*(),Jian-hua LV1,Li-zhen XU1 |
1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China 2. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211189, China 3. Nanri Group Corporation, Nanjing 211189, China |
引用本文:
黄新宇,游帆,张沛,张昭,张柏礼,吕建华,徐立臻. 基于多分类及特征融合的静默活体检测算法[J]. 浙江大学学报(工学版), 2022, 56(2): 263-270.
Xin-yu HUANG,Fan YOU,Pei ZHANG,Zhao ZHANG,Bai-li ZHANG,Jian-hua LV,Li-zhen XU. Silent liveness detection algorithm based on multi classification and feature fusion network. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 263-270.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.006
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I2/263
|
1 |
RAMACHANDRA R, BUSCH C Presentation attack detection methods for face recognition systems: a comprehensive survey[J]. ACM Computing Surveys (CSUR), 2017, 50 (1): 1- 37
doi: 10.1145/3009967
|
2 |
卢子谦, 陆哲明, 沈冯立, 等 人脸反欺诈活体检测综述[J]. 信息安全学报, 2020, 5 (2): 18- 27 LU Zi-qian, LU Zhe-ming, SHEN Feng-li, et al A survey of face anti-spoofing[J]. Journal of Cyber Security, 2020, 5 (2): 18- 27
|
3 |
ZHANG Z W, YAN J J, LIU S F, et al. A face antispoofing database with diverse attacks[C]// 2012 5th IAPR International Conference on Biometrics (ICB). Phuket: IEEE, 2012: 26-31.
|
4 |
BOULKENAFET Z, AKHTAR Z, FENG X Y, et al Face anti-spoofing in biometric systems[J]. Biometric Security and Privacy, 2017, 299- 321
|
5 |
GALBALLY J, MARCEL S. Face anti-spoofing based on general image quality assessment[C]// 2014 22nd International Conference on Pattern Recognition (ICPR). Columbia: IEEE, 2014: 1173-1178.
|
6 |
DI W, HU H, JAIN A K Face spoof detection with image distortion analysis[J]. IEEE Transactions on Information Forensics and Security, 2015, 10 (4): 746- 761
doi: 10.1109/TIFS.2015.2400395
|
7 |
MAATTA J Face spoofing detection from single images using texture and local shape analysis[J]. IET Biometrics, 2012, 1 (1): 3- 10
doi: 10.1049/iet-bmt.2011.0009
|
8 |
RAGHAVENDRA R, RAJA K B, BUSCH C Presentation attack detection for face recognition using light field camera[J]. IEEE Transactions on Image Processing, 2015, 24 (3): 1060- 1075
doi: 10.1109/TIP.2015.2395951
|
9 |
CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing[C]// Proceedings of International Conference of Biometrics Special Interest Group (BIOSIG). Darmstadt: IEEE, 2012: 1-7.
|
10 |
BOULKENAFET Z, KOMULAINEN J, HADID A. Face anti-spoofing based on color texture analysis[C]// 2015 IEEE International Conference on Image Processing (ICIP). Quebec City: IEEE, 2015: 2636-2640.
|
11 |
GRAGNANIELLO D, POGGI G, SANSONE C, et al An investigation of local descriptors for biometric spoofing detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10 (4): 849- 863
doi: 10.1109/TIFS.2015.2404294
|
12 |
BOULKENAFET Z, KOMULAINEN J, HADID A Face antispoofing using speeded-up robust features and fisher vector encoding[J]. IEEE Signal Processing Letters, 2016, 24 (2): 141- 145
|
13 |
PATEL K, HAN H, JAIN A K Secure face unlock: spoof detection on smartphones[J]. IEEE Transactions on Information Forensics and Security, 2016, 11 (10): 2268- 2283
doi: 10.1109/TIFS.2016.2578288
|
14 |
YANG J, LEI Z, LI S Z Learn convolutional neural network for face anti-spoofing[J]. Computer Sicence, 2014, 9281: 373- 384
|
15 |
LI L, FENG X Y, BOULKENAFET Z, et al. An original face anti-spoofing approach using partial convolutional neural network[C]// 2016 6th International Conference on Image Processing Theory, Tools and Applications (IPTA). Oulu: IEEE, 2016.
|
16 |
ATOUM Y, LIU Y J, JOURABLOO A, et al. Face anti-spoofing using patch and depth-based CNNs[C]// 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver: IEEE, 2017: 319-328.
|
17 |
LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: binary or auxiliary supervision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 389-398.
|
18 |
CHEN H, HU G, LEI Z, et al Attention-based two-stream convolutional networks for face spoofing detection[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 578- 593
|
19 |
龙敏, 佟越洋 应用卷积神经网络的人脸活体检测算法研究[J]. 计算机科学与探索, 2018, 12 (10): 1658- 1670 LONG Ming, TONG Yue-yang Research on face liveness detection algorithm using convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12 (10): 1658- 1670
doi: 10.3778/j.issn.1673-9418.1801009
|
20 |
SHAO R, LAN X, LI J, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 10023-10031.
|
21 |
WANG Z, ZHAO C, QIN Y, et al. Exploiting temporal and depth information for multi-frame face anti-spoofing[EB/OL]. [2021-07-01]. https://arxiv.org/abs/1811.05118v3.
|
22 |
WANG Z Z, YU Z T, ZHAO C X, et al. Deep spatial gradient and temporal depth learning for face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5042-5051.
|
23 |
YU Z T, ZHAO C X, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5295-5305.
|
24 |
SHEN T, HUANG Y Y, TONG Z J. Facebagnet: bag-of-local-features model for multi-modal face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach: IEEE, 2019: 1611-1616.
|
25 |
ZHANG S, LIU A, WAN J, et al Casia-surf: a large-scale multi-modal benchmark for face anti-spoofing[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (2): 182- 193
doi: 10.1109/TBIOM.2020.2973001
|
26 |
皮家甜, 杨杰之, 杨琳希, 等 基于多模态特征融合的轻量级人脸活体检测方法[J]. 计算机应用, 2020, 40 (12): 3658- 3665 PI Jia-tian, YANG Jie-zhi, YANG Lin-xi, at el Lightweight face liveness detection method based on multi-modal feature fusion[J]. Journal of Computer Applications, 2020, 40 (12): 3658- 3665
|
27 |
BOULKENAFET Z, KOMULAINEN J, LI L, et al. Oulu-npu: a mobile face presentation attack database with real-world variations[C]// 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2017: 612-618.
|
28 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
|
29 |
PEREIRA T D, ANJOS A, DE MARTINO J M, et al. Can face anti-spoofing countermeasures work in a real world scenario?[C]// 2013 International Conference on Biometrics (ICB). Madrid: IEEE, 2013: 1-8.
|
30 |
KOMULAINEN J, HADID A, PIETIKAINEN M, et al. Complementary countermeasures for detecting scenic face spoofing attacks[C]// 2013 International Conference on Biometrics (ICB). Madrid: IEEE, 2013: 1-7.
|
31 |
GEORGE A, MARCEL S. Deep pixel-wise binary supervision for face presentation attack detection[C]// 2019 International Conference on Biometrics (ICB). Crete: IEEE, 2019: 1-8.
|
32 |
BOULKENAFET Z, KOMULAINEN J, HADID A Face spoofing detection using colour texture analysis[J]. IEEE Transactions on Information Forensics and Security, 2016, 11 (8): 1818- 1830
doi: 10.1109/TIFS.2016.2555286
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|