Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (2): 263-270    DOI: 10.3785/j.issn.1008-973X.2022.02.006
计算机与控制工程     
基于多分类及特征融合的静默活体检测算法
黄新宇1(),游帆1,张沛2,3,张昭2,3,张柏礼1,*(),吕建华1,徐立臻1
1. 东南大学 计算机科学与技术学院,江苏 南京 211189
2. 智能电网保护和运行控制国家重点实验室,江苏 南京 211189
3. 南瑞集团,江苏 南京 211189
Silent liveness detection algorithm based on multi classification and feature fusion network
Xin-yu HUANG1(),Fan YOU1,Pei ZHANG2,3,Zhao ZHANG2,3,Bai-li ZHANG1,*(),Jian-hua LV1,Li-zhen XU1
1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211189, China
3. Nanri Group Corporation, Nanjing 211189, China
 全文: PDF(913 KB)   HTML
摘要:

现有的静默活体检测研究忽略不同非活体攻击方式之间的差异,以及不考虑活体和非活体样本类别不均衡对模型学习的不利影响. 本研究将非活体攻击类别细分成打印攻击和展示攻击,将静默活体检测由传统的二分类问题转变为多分类问题,并提出采取交叉熵作为损失函数对网络模型进行训练的方案,用以克服二分类和类别不均衡问题,使得模型训练中能更准确发现和抽象出非活体人脸样本共同的欺诈特征,提高网络模型对非活体识别的精准度. 构建双流特征融合网络模型,采取注意力机制对从RGB和YCrCb这2种不同色彩空间提取到的特征向量进行自适应加权融合,以进一步提升网络模型的特征表示能力. 在CASIA-FASD、Replay-Attack、MSU-MFSD和OULU-NPU 4个公开数据集进行大量的对比实验,实验结果表明,采取多分类策略以及特征融合的静默活体检测模型能够有效降低分类错误率并提升泛化能力.

关键词: 人脸活体检测多分类类别不均衡交叉熵损失特征融合    
Abstract:

Difference between non-liveness attack types is neglected, and adverse impact of category imbalance between liveness and non-liveness samples on model training is not considered in existing studies of silent liveness detection. In this paper, non-liveness attacks were subdivided into two categories, print attack and display attack, which transformed silent liveness detection from traditional two-classification problem into multi-classification problem. And the cross-entropy was used as the loss function to train network model. Thus, the disadvantage of binary classification and category imbalance can be eliminated, common features of the non-liveness face samples were likely to be identified more accurately through model training, and the accuracy of the network model was improved for non-liveness recognition. Moreover, a two-stream feature fusion the network model was constructed to further improve the feature representation capacity of the network model, which adopted the attention mechanism to adaptively fuse the feature vectors extracted from RGB and YCrCb. Abundant comparative experiments were performed on four public datasets, CASIA-FASD, Replay-Attack, MSU-MFSD and OULU-NPU. Experimental results indicate that silent liveness detection model adopting multi-classification strategy and feature fusion can effectively reduce the classification error and improve over-generalization ability.

Key words: face liveness detection    multi classification    class imbalance    cross-entropy loss    feature fusion
收稿日期: 2021-07-19 出版日期: 2022-03-03
CLC:  TP 399  
基金资助: 国家重点研发计划资助项目(2021YFC3340300);智能电网保护和运行控制国家重点实验室资助项目(NARI-T-2-2019189);科工局项目(6909006020);中央高校基本科研业务费专项资金资助项目(2242018S30025,2242021k10011)
通讯作者: 张柏礼     E-mail: 2639239697@qq.com;220191827@seu.edu.cn
作者简介: 黄新宇(1996—),男,硕士,从事人脸识别、活体检测研究. orcid.org/0000-0002-1527-7219. E-mail: 2639239697@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄新宇
游帆
张沛
张昭
张柏礼
吕建华
徐立臻

引用本文:

黄新宇,游帆,张沛,张昭,张柏礼,吕建华,徐立臻. 基于多分类及特征融合的静默活体检测算法[J]. 浙江大学学报(工学版), 2022, 56(2): 263-270.

Xin-yu HUANG,Fan YOU,Pei ZHANG,Zhao ZHANG,Bai-li ZHANG,Jian-hua LV,Li-zhen XU. Silent liveness detection algorithm based on multi classification and feature fusion network. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 263-270.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I2/263

图 1  OULU-NPU数据集中3种类别样本
图 2  二分类下样本数目比率
图 3  多分类下样本数目比率
图 4  BaseNet网络模型
图 5  双流特征融合网络
网络结构 方法 EER/%
CASIA-FASD MSU-MFSD
ResNet18 二分类 2.7778 10.0000
ResNet18 +FL 4.0741 6.6667
ResNet18 多分类 1.4815 7.5000
BaseNet 二分类 6.6667 5.8333
BaseNet +FL 3.7037 2.5000
BaseNet 多分类 5.5556 2.5000
表 1  CASIA-FASD和MSU-MFSD数据集内部测试
网络结构 方法 APCER/% BPCER/% ACER/%
ResNet18 二分类 12.7778 6.6667 9.7222
ResNet18 +FL 10.5556 3.0556 6.8056
ResNet18 多分类 7.5000 4.1667 5.8333
BaseNet 二分类 11.6667 2.5000 7.0833
BaseNet +FL 5.8333 5.0000 5.4167
BaseNet 多分类 5.6944 5.0000 5.3472
表 2  OULU-NPU数据集内部测试
网络结构 方法 EER/% HTER/%
ResNet18 二分类 0.0000 2.0000
ResNet18 +FL 0.0000 2.7875
ResNet18 多分类 0.0000 0.7500
BaseNet 二分类 0.0000 1.0000
BaseNet +FL 6.0000 2.8750
BaseNet 多分类 0.0000 0.3750
表 3  Replay-Attack数据集内部测试
方法 Replay-Attack CASIA-FASD
EER/% HTER/% EER/%
LBP-TOP[29] 7.900 7.600 10.000
CNN[14] 6.100 2.100 7.400
IDA[6] ? 7.400 ?
Motion+LBP[30] 4.500 5.110 ?
Color-LBP[10] 0.400 2.900 6.200
MSR-Attention[18] 0.210 0.389 3.145
BaseNet-Fusion 1.000 0.500 2.961
表 4  不同方法在CASIA-FASD和Replay-Attack数据集上的性能对比
方法 APCER/% BPCER/% ACER/%
MixedFASNet[1] 9.7000 2.5000 6.1000
DeepPixBiS[31] 11.4000 0.6000 6.0000
MSR-Attention[18] 7.6000 2.2000 4.9000
BaseNet-Fusion 6.6667 2.5000 4.5833
表 5  不同方法在OULU-NPU数据集上的性能对比
网络结构 方法 EER/%
训练: CASIA
测试: Replay
训练: Replay
测试: CASIA
ResNet-18 二分类 40.8750 48.3333
ResNet-18 多分类 36.7500 47.5926
BaseNet 二分类 47.8750 56.6670
BaseNet 多分类 33.2500 45.3704
表 6  二分类和多分类方法在CASIA-FASD和Replay-Attack数据集上的交叉测试
方法 EER/%
训练: CASIA
测试: Replay
训练: Replay
测试: CASIA
LBP-TOP[29] 49.700 60.6000
CNN[14] 48.500 39.6000
Color-LBP[10] 47.000 39.6000
Color-Texture[32] 30.300 37.7000
FaceDs[33] 28.500 41.1000
MSR-Attention[18] 36.200 34.7000
BaseNet-Fusion 27.875 38.5185
表 7  不同方法在Replay-Attack和CASIA-FASD数据集下的交叉测试
图 6  二分类下CASIA-FASD测试集数据的特征分布
图 7  多分类下CASIA-FASD测试集数据的特征分布
1 RAMACHANDRA R, BUSCH C Presentation attack detection methods for face recognition systems: a comprehensive survey[J]. ACM Computing Surveys (CSUR), 2017, 50 (1): 1- 37
doi: 10.1145/3009967
2 卢子谦, 陆哲明, 沈冯立, 等 人脸反欺诈活体检测综述[J]. 信息安全学报, 2020, 5 (2): 18- 27
LU Zi-qian, LU Zhe-ming, SHEN Feng-li, et al A survey of face anti-spoofing[J]. Journal of Cyber Security, 2020, 5 (2): 18- 27
3 ZHANG Z W, YAN J J, LIU S F, et al. A face antispoofing database with diverse attacks[C]// 2012 5th IAPR International Conference on Biometrics (ICB). Phuket: IEEE, 2012: 26-31.
4 BOULKENAFET Z, AKHTAR Z, FENG X Y, et al Face anti-spoofing in biometric systems[J]. Biometric Security and Privacy, 2017, 299- 321
5 GALBALLY J, MARCEL S. Face anti-spoofing based on general image quality assessment[C]// 2014 22nd International Conference on Pattern Recognition (ICPR). Columbia: IEEE, 2014: 1173-1178.
6 DI W, HU H, JAIN A K Face spoof detection with image distortion analysis[J]. IEEE Transactions on Information Forensics and Security, 2015, 10 (4): 746- 761
doi: 10.1109/TIFS.2015.2400395
7 MAATTA J Face spoofing detection from single images using texture and local shape analysis[J]. IET Biometrics, 2012, 1 (1): 3- 10
doi: 10.1049/iet-bmt.2011.0009
8 RAGHAVENDRA R, RAJA K B, BUSCH C Presentation attack detection for face recognition using light field camera[J]. IEEE Transactions on Image Processing, 2015, 24 (3): 1060- 1075
doi: 10.1109/TIP.2015.2395951
9 CHINGOVSKA I, ANJOS A, MARCEL S. On the effectiveness of local binary patterns in face anti-spoofing[C]// Proceedings of International Conference of Biometrics Special Interest Group (BIOSIG). Darmstadt: IEEE, 2012: 1-7.
10 BOULKENAFET Z, KOMULAINEN J, HADID A. Face anti-spoofing based on color texture analysis[C]// 2015 IEEE International Conference on Image Processing (ICIP). Quebec City: IEEE, 2015: 2636-2640.
11 GRAGNANIELLO D, POGGI G, SANSONE C, et al An investigation of local descriptors for biometric spoofing detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10 (4): 849- 863
doi: 10.1109/TIFS.2015.2404294
12 BOULKENAFET Z, KOMULAINEN J, HADID A Face antispoofing using speeded-up robust features and fisher vector encoding[J]. IEEE Signal Processing Letters, 2016, 24 (2): 141- 145
13 PATEL K, HAN H, JAIN A K Secure face unlock: spoof detection on smartphones[J]. IEEE Transactions on Information Forensics and Security, 2016, 11 (10): 2268- 2283
doi: 10.1109/TIFS.2016.2578288
14 YANG J, LEI Z, LI S Z Learn convolutional neural network for face anti-spoofing[J]. Computer Sicence, 2014, 9281: 373- 384
15 LI L, FENG X Y, BOULKENAFET Z, et al. An original face anti-spoofing approach using partial convolutional neural network[C]// 2016 6th International Conference on Image Processing Theory, Tools and Applications (IPTA). Oulu: IEEE, 2016.
16 ATOUM Y, LIU Y J, JOURABLOO A, et al. Face anti-spoofing using patch and depth-based CNNs[C]// 2017 IEEE International Joint Conference on Biometrics (IJCB). Denver: IEEE, 2017: 319-328.
17 LIU Y J, JOURABLOO A, LIU X M. Learning deep models for face anti-spoofing: binary or auxiliary supervision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 389-398.
18 CHEN H, HU G, LEI Z, et al Attention-based two-stream convolutional networks for face spoofing detection[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 578- 593
19 龙敏, 佟越洋 应用卷积神经网络的人脸活体检测算法研究[J]. 计算机科学与探索, 2018, 12 (10): 1658- 1670
LONG Ming, TONG Yue-yang Research on face liveness detection algorithm using convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12 (10): 1658- 1670
doi: 10.3778/j.issn.1673-9418.1801009
20 SHAO R, LAN X, LI J, et al. Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 10023-10031.
21 WANG Z, ZHAO C, QIN Y, et al. Exploiting temporal and depth information for multi-frame face anti-spoofing[EB/OL]. [2021-07-01]. https://arxiv.org/abs/1811.05118v3.
22 WANG Z Z, YU Z T, ZHAO C X, et al. Deep spatial gradient and temporal depth learning for face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5042-5051.
23 YU Z T, ZHAO C X, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 5295-5305.
24 SHEN T, HUANG Y Y, TONG Z J. Facebagnet: bag-of-local-features model for multi-modal face anti-spoofing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach: IEEE, 2019: 1611-1616.
25 ZHANG S, LIU A, WAN J, et al Casia-surf: a large-scale multi-modal benchmark for face anti-spoofing[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (2): 182- 193
doi: 10.1109/TBIOM.2020.2973001
26 皮家甜, 杨杰之, 杨琳希, 等 基于多模态特征融合的轻量级人脸活体检测方法[J]. 计算机应用, 2020, 40 (12): 3658- 3665
PI Jia-tian, YANG Jie-zhi, YANG Lin-xi, at el Lightweight face liveness detection method based on multi-modal feature fusion[J]. Journal of Computer Applications, 2020, 40 (12): 3658- 3665
27 BOULKENAFET Z, KOMULAINEN J, LI L, et al. Oulu-npu: a mobile face presentation attack database with real-world variations[C]// 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2017: 612-618.
28 LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
29 PEREIRA T D, ANJOS A, DE MARTINO J M, et al. Can face anti-spoofing countermeasures work in a real world scenario?[C]// 2013 International Conference on Biometrics (ICB). Madrid: IEEE, 2013: 1-8.
30 KOMULAINEN J, HADID A, PIETIKAINEN M, et al. Complementary countermeasures for detecting scenic face spoofing attacks[C]// 2013 International Conference on Biometrics (ICB). Madrid: IEEE, 2013: 1-7.
31 GEORGE A, MARCEL S. Deep pixel-wise binary supervision for face presentation attack detection[C]// 2019 International Conference on Biometrics (ICB). Crete: IEEE, 2019: 1-8.
32 BOULKENAFET Z, KOMULAINEN J, HADID A Face spoofing detection using colour texture analysis[J]. IEEE Transactions on Information Forensics and Security, 2016, 11 (8): 1818- 1830
doi: 10.1109/TIFS.2016.2555286
[1] 吴兰,王涵,李斌全,李崇阳,孔凡士. 基于自监督任务的多源无监督域适应法[J]. 浙江大学学报(工学版), 2022, 56(4): 754-763.
[2] 张娜,戚旭磊,包晓安,吴彪,涂小妹,金瑜婷. 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(4): 783-794.
[3] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
[4] 陈岳林,田文靖,蔡晓东,郑淑婷. 基于密集连接网络和多维特征融合的文本匹配模型[J]. 浙江大学学报(工学版), 2021, 55(12): 2352-2358.
[5] 陈雪云,夏瑾,杜珂. 基于多线型特征增强网络的架空输电线检测[J]. 浙江大学学报(工学版), 2021, 55(12): 2382-2389.
[6] 郑浦,白宏阳,李伟,郭宏伟. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784.
[7] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[8] 林泓,卢瑶瑶. 聚焦难样本的区分尺度的文字检测方法[J]. 浙江大学学报(工学版), 2019, 53(8): 1506-1516.
[9] 蔡畅,黄亦翔,邢宏文. 基于梯度提升树的飞机机身对接状态识别[J]. 浙江大学学报(工学版), 2019, 53(7): 1274-1281.
[10] 成翔昊,达飞鹏,汪亮. 基于融合约束局部模型的三维人脸特征点定位[J]. 浙江大学学报(工学版), 2019, 53(4): 770-776.
[11] 王万良,杨胜兰,赵燕伟,李卓蓉. 基于条件边界平衡生成对抗网络的河流表面流速估测[J]. 浙江大学学报(工学版), 2019, 53(11): 2118-2128.
[12] 谭海龙, 刘康玲, 金鑫, 石向荣, 梁军. 基于μσ-DWC特征和树结构M-SVM的多维时间序列分类[J]. 浙江大学学报(工学版), 2015, 49(6): 1061-1069.
[13] 李侃,黄文雄,黄忠华. 基于支持向量机的多传感器探测目标分类方法[J]. J4, 2013, 47(1): 15-22.
[14] 鲍必赛, 伍健荣, 楼晓俊, 刘海涛. 基于二维特征矩阵的特征融合算法[J]. J4, 2012, 46(11): 2081-2088.
[15] 张赞超, 夏顺仁. 全自动尿液图像识别技术[J]. J4, 2009, 43(5): 832-838.