计算机技术与控制工程 |
|
|
|
|
基于条件边界平衡生成对抗网络的河流表面流速估测 |
王万良1(),杨胜兰1,赵燕伟2,李卓蓉1 |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 浙江工业大学 机械工程学院,浙江 杭州 310023 |
|
Estimation of river surface flow velocity based on conditional boundary equilibrium generative adversarial network |
Wan-liang WANG1(),Sheng-lan YANG1,Yan-wei ZHAO2,Zhuo-rong LI1 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
王万良,杨胜兰,赵燕伟,李卓蓉. 基于条件边界平衡生成对抗网络的河流表面流速估测[J]. 浙江大学学报(工学版), 2019, 53(11): 2118-2128.
Wan-liang WANG,Sheng-lan YANG,Yan-wei ZHAO,Zhuo-rong LI. Estimation of river surface flow velocity based on conditional boundary equilibrium generative adversarial network. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2118-2128.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.009
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2118
|
1 |
尚淑丽, 顾正华, 赵世凯, 等 基于模糊逻辑的水电工程生态效应综合评价[J]. 浙江大学学报:工学版, 2014, 48 (9): 1603- 1609 SHANG Shu-li, GU Zheng-hua, ZHAO Shi-kai, et al Comprehensive evaluation of ecological effects of hydropower projects based on fuzzy logic[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1603- 1609
|
2 |
周李智, 王万良, 徐新黎, 等 基于生态惩罚的混联梯级小水电群优化调度[J]. 水力发电学报, 2015, 34 (7): 45- 56 ZHOU Li-zhi, WANG Wan-liang, XU Xin-li, et al Optimal scheduling of hybrid cascade hydropower groups based on ecological penalty[J]. Journal of Hydroelectric Engineering, 2015, 34 (7): 45- 56
|
3 |
鲍鑫, 贺治国, 王振宇, 等 台风暴雨影响区溃坝洪灾淹没损失评估[J]. 浙江大学学报: 工学版, 2012, 46 (9): 1638- 1646 BAO Xin, HE Zhi-guo, WANG Zhen-yu, et al Evaluation of flooding damage caused by dam flood in typhoon storm-affected area[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1638- 1646
|
4 |
吴俊, 丁甡奇, 余葵, 等 光电非接触式表面流速测量[J]. 光学精密工程, 2010, 18 (2): 349- 356 WU Jun, DING Shen-qi, YU Kui, et al Photoelectric non-contact surface velocity measurement[J]. Optics and Precision Engineering, 2010, 18 (2): 349- 356
|
5 |
李笠. 考虑生态因素的小水电优化调度算法研究[D].杭州: 浙江工业大学, 2014. LI Li. Research on small hydropower optimal scheduling algorithm considering ecological factors [D]. Hangzhou: Zhejiang University of Technology, 2014.
|
6 |
FULTON J, JH O N, OSTROWSKI J, et al Measuring real-time streamflow using emerging technologies: radar, hydroacoustics, and the probability concept[J]. Journal of Hydrology, 2008, 357 (1): 1- 10
|
7 |
COSTA J E, CHENG R T, HAENI F P, et al Use of radars to monitor stream discharge by noncontact methods[J]. Water Resources Research, 2006, 42 (7): 887- 896
|
8 |
HOU Y, WEN B, YANG Y, et al Two-dimensional river flow patterns observed with a pair of UHF radar system[J]. International Journal of Antennas and Propagation, 2017, 4792324
|
9 |
MONIN A S, YAGLOM A M. Statistical fluid mechanics, volume Ⅱ: mechanics of turbulence [M]. New York: Courier Corporation, 2007.
|
10 |
FUJITA I, KOMURA S Application of video image analysis for measurements of river-surface flows[J]. Proceedings of Hydraulic Engineering, 1994, 38: 733- 738
doi: 10.2208/prohe.38.733
|
11 |
阮晓东, 刘志皓, 瞿建武 粒子图像测速技术在两相流测量中的应用研究[J]. 浙江大学学报:工学版, 2005, 39 (6): 785- 788 RUAN Xiao-dong, LIU Zhi-hao, QU Jian-wu Application of particle image velocimetry in two-phase flow measurement[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (6): 785- 788
|
12 |
MESELHE E A, MUSTE M, PEEVA T Large scale particle image velocimetry for low velocity and shallow water flows[J]. Journal of Hydraulic Engineering, 2004, 130 (9): 937- 940
doi: 10.1061/(ASCE)0733-9429(2004)130:9(937)
|
13 |
TAURO F, GRIMALDI S, PORFIRI M Unraveling flow patterns through nonlinear manifold learning[J]. Plos One, 2014, 9 (3): e91131
doi: 10.1371/journal.pone.0091131
|
14 |
王万良, 邱虹, 郑建炜 基于压缩感知图像分析的河流表面流速估计方法[J]. 水力发电学报, 2018, 37 (5): 69- 79 WANG Wan-liang, QIU Hong, ZHENG Jian-wei Estimation method of river surface velocity based on compressed sensing image analysis[J]. Journal of Hydroelectric Engineering, 2018, 37 (5): 69- 79
doi: 10.11660/slfdxb.20180507
|
15 |
陈金鹏, 李贵山, 李双科, 等 基于机器视觉的流体速度量化研究[J]. 自动化仪表, 2012, 33 (12): 5- 9 CHEN Jin-peng, LI Gui-shan, LI Shuang-ke, et al Quantitative study of fluid velocity based on machine vision[J]. Automation Instrumentation, 2012, 33 (12): 5- 9
doi: 10.3969/j.issn.1000-0380.2012.12.002
|
16 |
SHABAN H, TAVOULARIS S Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals[J]. International Journal of Multiphase Flow, 2014, 67: 106- 117
doi: 10.1016/j.ijmultiphaseflow.2014.08.012
|
17 |
王万良, 人工智能及其应用: 第三版 [M]. 北京: 高等教育出版社, 2016.
|
18 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Advances in Neural Information Processing Systems. Montreal: ACM, 2014: 2672-2680.
|
19 |
CRESWELL A, WHITE T, DUMOULIN V, et al Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35 (1): 53- 65
doi: 10.1109/MSP.2017.2765202
|
20 |
王坤峰, 苟超, 段艳杰, 等 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43 (3): 321- 332 WANG Kun-feng, GOU Chao, DUAN Yan-jie, et al Research progress and prospects of generative anti-network GAN[J]. Acta Automatica Sinica, 2017, 43 (3): 321- 332
|
21 |
王万良, 李卓蓉 生成式对抗网络研究进展[J]. 通信学报, 2018, 39 (2): 135- 149 WANG Wan-liang, LI Zhuo-rong Research progress of generating countermeasure networks[J]. Journal on Communications, 2018, 39 (2): 135- 149
doi: 10.3969/j.issn.1001-2400.2018.02.023
|
22 |
RATLIFF L J, BURDEN S A, SASTRY S S. Characterization and computation of local Nash equilibria in continuous games [C]// Communication, Control, and Computing. Monticello: IEEE, 2013: 917-924.
|
23 |
BERTHELOT D, SCHUMM T, METZ L. BEGAN: boundary equilibrium generative adversarial networks [EB/OL]. (2017-05-31). https://arxiv.org/abs/1703.10717.
|
24 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. (2014-11-06). http://arxiv.org/abs/1411.1784.
|
25 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN [EB/OL]. (2017-12-06). https://arxiv.org/abs/1701.07875
|
26 |
LECUN Y, BENGIO Y Convolutional networks for images, speech, and time series[J]. Handbook of Brain Theory and Neural Networks, 1995, 3361 (10):
|
27 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// International Conference on Neural Information Processing Systems. Lake Tahoe: ACM, 2012, 25(2): 1097-1105.
|
28 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
29 |
SIMONYAN K, ZISSERMAN A Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 1 (2): 3
|
30 |
WRIGHT J, YANG A Y, GANESH A, et al Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210- 227
doi: 10.1109/TPAMI.2008.79
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|