计算机技术、信息工程 |
|
|
|
|
基于优化预测定位的单阶段目标检测算法 |
张娜1( ),戚旭磊1,包晓安1,*( ),吴彪1,涂小妹2,金瑜婷2 |
1. 浙江理工大学 信息学院,浙江 杭州 310018 2. 浙江广厦建设职业技术大学 信息学院,浙江 东阳 322100 |
|
Single-stage object detection algorithm based on optimizing position prediction |
Na ZHANG1( ),Xu-lei QI1,Xiao-an BAO1,*( ),Biao WU1,Xiao-mei TU2,Yu-ting JIN2 |
1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. School of Information Science and Technology, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322100, China |
引用本文:
张娜,戚旭磊,包晓安,吴彪,涂小妹,金瑜婷. 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(4): 783-794.
Na ZHANG,Xu-lei QI,Xiao-an BAO,Biao WU,Xiao-mei TU,Yu-ting JIN. Single-stage object detection algorithm based on optimizing position prediction. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 783-794.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.018
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I4/783
|
1 |
高文, 汤洋, 朱明 复杂背景下目标检测的级联分类器算法研究[J]. 物理学报, 2014, 63 (9): 156- 164 GAO Wen, TANG Yang, ZHU Ming Study on the cascade classifier in target detection under complex background[J]. Acta Physica Sinica, 2014, 63 (9): 156- 164
|
2 |
王浩, 单文静, 方宝富 基于多层上下文卷积神经网络的目标检测算法[J]. 模式识别与人工智能, 2020, 33 (2): 113- 120 WANG Hao, SHAN Wen-jing, FANG Bao-fu Multi-layers context convolutional neural network for object detection[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (2): 113- 120
|
3 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (6): 1137- 1149
|
4 |
尉婉青, 禹晶, 柏鳗晏, 等 SSD与时空特征融合的视频目标检测[J]. 中国图象图形学报, 2021, 26 (3): 542- 555 WEI Wan-qing, YU Jing, BAI Man-yan, et al Video object detection using fusion of SSD and spatiotemporal features[J]. Journal of Image and Graphics, 2021, 26 (3): 542- 555
doi: 10.11834/jig.200020
|
5 |
徐利锋, 黄海帆, 丁维龙, 等 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报: 工学版, 2021, 55 (2): 377- 385 XU Li-feng, HUANG Hai-fan, DING Wei-long, et al Detection of small fruit target based on improved DenseNet[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 377- 385
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C] // IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2016: 779–788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
8 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-08-08). https://arxiv.org/pdf/1804.02767.pdf.
|
9 |
SHELHAMER E, LONG J, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651
doi: 10.1109/TPAMI.2016.2572683
|
10 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
|
11 |
ZHANG S F, CHI C, YAO Y Q, el al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756-9765.
|
12 |
LIN T Y, DOLLAR P, GIRSGICK, et al. Feature pyramid networks for object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
13 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
|
14 |
郑浦, 白宏阳, 李伟, 等 复杂背景下的小目标检测算法[J]. 浙江大学学报: 工学版, 2020, 54 (9): 1777- 1784 ZHENG Pu, BAI Hong-yang, LI Wei, et al Small target detection algorithm in complex background[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (9): 1777- 1784
|
15 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [EB/OL]. (2017-01-23). https://arxiv.org/pdf/1701.06659.pdf.
|
16 |
LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector [EB/OL]. (2017-12-04). https://arxiv.org/pdf/1712.00960.pdf.
|
17 |
SHEN Z Q, LIU Z, LI J G, et al. DSOD: learning deeply supervised object detectors from Scratch [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1937-1945.
|
18 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4203-4212.
|
19 |
HE Y X, ZHU C C, WANG J R, et al. Bounding box regression with uncertainty for accurate object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2883-2892.
|
20 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5562-5570.
|
21 |
LIU S T, HUANG D, WANG Y H. Adaptive NMS: refining pedestrian detection in a crowd [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 6452-6461.
|
22 |
LUO Y H, CAO X, ZHANG J T, et al. CE-FPN: enhancing channel information for object detection [EB/OL]. (2021-03-09). https://arxiv.org/pdf/2103.10643.pdf.
|
23 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 821-830.
|
24 |
GUO C X, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12592-12601.
|
25 |
WANG K X, LIEW J H, ZHOU D Q, et al. PANet: few-shot image semantic segmentation with prototype alignment [C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9196-9205.
|
26 |
TAN X M, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
|
27 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807.
|
28 |
HE J, SHEN L, ALBANIE S, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
29 |
HOU Q B, ZHOU D Q, FENG J S, et al. Coordinate attention for efficient mobile network design [C]//IEEE International Conference on Computer Vision. [S. l.]: IEEE, 2021: 13708-13717.
|
30 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324.
|
31 |
JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection [C]// European Conference on Computer Vision. Munich: Springer, 2018: 816-832.
|
32 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
|
33 |
LI X, WANG W H, WU L J, et al Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002- 21012
|
34 |
WU S K, LI X P, WANG X G IoU-aware single-stage object detector for accurate localization[J]. Image and Vision Computing, 2020, 97: 103911
|
35 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU Loss: faster and better learning for bounding box regression[C]// AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
|
36 |
HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
37 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154-6162.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|