计算机技术与图像处理 |
|
|
|
|
目标检测强化上下文模型 |
郑晨斌1(),张勇1,*(),胡杭2,吴颖睿1,黄广靖3 |
1. 北京航空航天大学 仪器科学与光电工程学院,北京 100191 2. 解放军66133部队,北京 100144 3. 北京航空航天大学 航空科学与工程学院,北京 100191 |
|
Object detection enhanced context model |
Chen-bin ZHENG1(),Yong ZHANG1,*(),Hang HU2,Ying-rui WU1,Guang-jing HUANG3 |
1. School of Instrumetation and Optoelectronic Engineering, Beihang University, Beijing 100191, China 2. Unit 66133 of PLA, Beijing 100144, China 3. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China |
引用本文:
郑晨斌,张勇,胡杭,吴颖睿,黄广靖. 目标检测强化上下文模型[J]. 浙江大学学报(工学版), 2020, 54(3): 529-539.
Chen-bin ZHENG,Yong ZHANG,Hang HU,Ying-rui WU,Guang-jing HUANG. Object detection enhanced context model. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 529-539.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.013
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I3/529
|
1 |
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection [C] // European Conference on Computer Vision. Munich: Springer, 2018: 404-418.
|
2 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
3 |
LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks [C] // Neural Information Processing Systems. Barcelona: [s. n.], 2016: 4898-4906.
|
4 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C] // Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
5 |
JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection [EB/OL]. (2017-05-26)[2019-02-26]. https://arxiv.xilesou.top/abs/1705.09587.
|
6 |
LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector [EB/OL]. (2018-05-17)[2019-02-26]. https://arxiv.org/abs/1712.00960.
|
7 |
SHELHAMER E, LONG J, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651
|
8 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
9 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network [C] // Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239.
|
10 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
11 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-12-25)[2019-02-26]. https://arxiv.org/abs/1706.05587.
|
12 |
FU C, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [EB/OL]. (2017-01-23)[2019-02-26]. https://arxiv.org/abs/1701.06659.
|
13 |
WANDELL B A, WINAWER J Computational neuroimaging and population receptive fields[J]. Trends in Cognitive Sciences, 2015, 19 (6): 349- 357
doi: 10.1016/j.tics.2015.03.009
|
14 |
REDMON J, FARHADI A. Farhadi. YOLO9000: better, faster, stronger [C] // Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
|
15 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08)[2019-02-26]. https://arxiv.org/abs/1804.02767.
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification [C] // International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
17 |
EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338
doi: 10.1007/s11263-009-0275-4
|
18 |
HUANG J, RATHOD V, SUN C, M, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C] // Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3296-3297.
|
19 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
20 |
BELL S, ZITNICK C L, BALA K, et al. Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks [C] // Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2874-2883.
|
21 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks [C] // Neural Information Processing Systems. Barcelona: [s. n.], 2016: 379-387.
|
22 |
ZHU Y S, ZHAO C Y, WANG J Q, et al. CoupleNet: coupling global structure with local parts for object detection [C] // International Conference on Computer Vision. Venice: IEEE, 2017: 4146-4154.
|
23 |
SHEN Z Q, LIU Z, LI J G, et al. DSOD: learning deeply supervised object detectors from scratch [C] // International Conference on Computer Vision. Venice: IEEE, 2017: 1937-1945.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|