计算机技术 |
|
|
|
|
基于空间约束的自适应单目3D物体检测算法 |
张峻宁1( ),苏群星1,2,*( ),刘鹏远1,王正军3,谷宏强1 |
1. 陆军工程大学 导弹工程系,河北 石家庄 050003 2. 陆军指挥学院,江苏 南京 210000 3. 32181部队,河北 石家庄 050003 |
|
Adaptive monocular 3D object detection algorithm based on spatial constraint |
Jun-ning ZHANFG1( ),Qun-xing SU1,2,*( ),Peng-yuan LIU1,Zheng-jun WANG3,Hong-qiang GU1 |
1. Missile Engineering Department, Army Engineering University, Shijiazhuang 050003, China 2. Army Command Academy, Nanjing 210000, China 3. 32181 Troops, Shijiazhuang 050003, China |
引用本文:
张峻宁,苏群星,刘鹏远,王正军,谷宏强. 基于空间约束的自适应单目3D物体检测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1138-1146.
Jun-ning ZHANFG,Qun-xing SU,Peng-yuan LIU,Zheng-jun WANG,Hong-qiang GU. Adaptive monocular 3D object detection algorithm based on spatial constraint. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1138-1146.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.010
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1138
|
1 |
袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming, et al Vehicle recognition method based on deep convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
|
2 |
CAI H P. Fast detection of multiple textureless 3D objects [C] // International Conference on Computer Vision Systems. Petersburg: ICCVS, 2013: 103-112.
|
3 |
养明起. 基于深度神经网络的视觉位姿估计[M]. 安徽: 中国科学技术大学, 2018.
|
4 |
HODAN T, HALUZAS P. T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects [C] // IEEE Winter Conference on Applications of Computer Vision. Santa Rosa: IEEE WCACS, 2017: 880-888.
|
5 |
OHNO K, TSUBOUCHI T, SHIGEMATSU B, et al Differential GPS and odometry-based outdoor navigation of a mobile robot[J]. Advanced Robotics, 2004, 18 (6): 611- 635
doi: 10.1163/1568553041257431
|
6 |
FUENTES P J, RUIZE A J, RENDON J M Visual simultaneous localization and mapping: a survey[J]. Artificial Intelligence Review, 2012, 43 (1): 55- 81
|
7 |
ENDRES F, HESS J, STURM J, et al 3D mapping with an RGB-D camera[J]. IEEE Transactions on Robotics, 2014, 30 (1): 177- 187
doi: 10.1109/TRO.2013.2279412
|
8 |
HODAN T, ZABULIS X. Detection and fine 3D pose estimation of texture-less objects in RGB-D images [C] // IEEE International Conference on Computer Vision. Sydney: IEEE CVPR, 2014: 4421-4428.
|
9 |
DAVID G L Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
doi: 10.1023/B:VISI.0000029664.99615.94
|
10 |
柳培忠, 阮晓虎, 田震, 等 一种基于多特征融合的视频目标跟踪方法[J]. 智能系统学报, 2015, (57): 319- 324 LIU Pei-zhong, RUAN Xiao-hu, TIAN Zhen, et al A video target tracking method based on multi-feature fusion[J]. Journal of Intelligent Systems, 2015, (57): 319- 324
|
11 |
贾祝广, 孙效玉, 王斌, 等 无人驾驶技术研究及展望[J]. 矿业装备, 2014, (5): 44- 47 JIA Zhu-guang, SUN Xiao-yu, WANG Bin, et al Research and prospect of unmanned driving technology[J]. Mining Equipment, 2014, (5): 44- 47
|
12 |
RUSU R B, BRADSKI G, THIBAUX R. Fast 3D recognition and pose using the viewpoint feature histogram [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Taiwan: IEEE ICIRS, 2010: 148-154.
|
13 |
YU X, TANNER S. Pose-CNN: a convolutional neural network for 6D object pose estimation in cluttered scenes [C] // IEEE Conference on Computer Vision and Pattern Recognition. Saltlake: IEEE CVPR, 2018.
|
14 |
RAD M, LEPETIT V. BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth [C] // IEEE International Conference on Computer Vision. Venice: IEEE ICCV, 2017: 3848-3856.
|
15 |
KEHL W, MANHARDT F, TOMBARI F, et al. Ssd-6D: making RGB-based 3D detection and 6D pose estimation great again [C] // IEEE International Conference on Computer Vision. Venice: IEEE ICCV, 2017: 1530-1538.
|
16 |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE CVPR, 2017: 6517-6525.
|
17 |
BANSAL A, RUSSELL B, GUPTA A. Marr revisited: 2D-3D alignment via surface normal prediction [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE CVPR, 2016: 5965-5974.
|
18 |
CHABOT F, CHAOUCH M, RABARISOA J, et al. Deep manta: a coarsetone many-task network for joint 2D and 3D vehicle analysis from monocular image [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE CVPR, 2017: 1827-1836.
|
19 |
谢雨宁. 融合形态学与特征点检测的建筑物自动三维重建关键技术研究[D]. 南京: 东南大学, 2016. XIE Yu-ning. Research on key technologies of automatic 3D reconstruction of buildings fused with morphology and feature detection [D]. Nanjing: Southeast University, 2016.
|
20 |
HEDAU V, HOIEM D, FORSYTH D. Thinking inside the box: using appearance models and context based on room geometry [C] // European Conference on Computer Vision. Heraklion: ECCV, 2010: 224-237.
|
21 |
CHEN X, KUNDU K, ZHANG Z, MA et al. Monocular 3D object detection for autonomous driving [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE CVPR, 2016: 2147-2156.
|
22 |
YANG S, SCHERER S. CubeSLAM: monocular 3D object detection and SLAM without prior models [C] // IEEE Conference on Computer Vision and Pattern Recognition. Saltlake: IEEE CVPR, 2018: 1-16.
|
23 |
宋欣, 王正玑, 程章林, 等 多分辨率线段提取方法及线段语义分析[J]. 集成技术, 2018, 7 (9): 67- 78 SONG Xin, WANG Zheng-ju, CHENG Zhang-lin, et al Multiresolution line segment extraction method and semantics analysis[J]. Integrated Technology, 2018, 7 (9): 67- 78
|
24 |
SONG S, LICHTENBERG S P, XIAO J. Sun RGB-D: a RGB-D scene understanding benchmark suite [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE CVPR, 2015: 567-576.
|
25 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C] // IEEE Conference on Computer Vision and Pattern Recognition. Rhode: IEEE CVPR, 2012: 3354–3361.
|
26 |
XIAO J, RUSSELL B, TORRALBA A. Localizing 3D cuboids in single-view images [C] // 25th International Conference on Neural Information Processing Systems. Cambodia: NIPSF 2012: 746-754.
|
27 |
CHOI W, CHAO Y W, PANTOFARU C, et al. Understanding indoor scenes using 3D geometric phrases [C] // IEEE Conference on Computer Vision and Pattern Recognition. Oregon: IEEE CVPR, 2013 : 33-40.
|
28 |
MOUSAVIAN A, ANGUEALOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE CVPR, 2017: 5632-5640.
|
29 |
XIANG Y, CHOI W, LIN Y, et al. Subcategory-aware convolutional neural networks for object proposals and detection [C] // Applications of Computer Vision. Santa Rosa: IEEE ACV, 2017: 924-933.
|
30 |
梁苍, 曹宁, 冯晔 改进的基于gLoG滤波实时消失点检测算法[J]. 国外电子测量技术, 2018, 37 (12): 36- 40 LIANG Cang, CAO Ning, FENG Ye Improved real-time vanishing point detection algorithm based on gLoG filter[J]. Foreign Electronic Measurement Technology, 2018, 37 (12): 36- 40
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|