Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 213-221    DOI: 10.3785/j.issn.1008-973X.2021.02.001
机械工程     
柔性膝关节保护外骨骼及其行走助力方法设计
杨灿军1,2(),彭桢哲2,徐铃辉2,杨巍1,2,*()
1. 浙江大学宁波研究院,浙江 宁波 315100
2. 浙江大学 机械工程学院,浙江 杭州 310058
Design of flexible knee-joint protection exoskeleton and walking assistance method
Can-jun YANG1,2(),Zhen-zhe PENG2,Ling-hui XU2,Wei YANG1,2,*()
1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1980 KB)   HTML
摘要:

设计柔性可穿戴式膝关节保护外骨骼,用于实现人体运动过程中膝关节负载减重及行走助力功能. 根据人体生物力学特点,使用固体各向同性材料惩罚(SIMP)模型与有限元分析设计柔性外骨骼膝关节,该柔性关节在行走运动支撑期具有刚性,能够减轻膝关节体重负载,在摆动期柔性较强,能适应人体生理关节运动特性,不对膝关节造成额外载荷. 在柔性可穿戴式膝关节外骨骼结构的基础上,配套设计行走助力模块,研究相应的助力控制方法可以实现步行助力. 性能测试实验表明,单侧膝关节保护外骨骼最大能减轻110 N的膝关节负载,外骨骼结构自身质量为639 g,减重比大;带行走助力模块的外骨骼系统质量为4.8 kg,能实现步行运动的助力功能.

关键词: 柔性外骨骼穿戴式外骨骼膝关节保护减重支撑行走助力    
Abstract:

A wearable flexible knee-joint protection exoskeleton was designed, which is used for knee-joint load reduction and force assistance during body motion. The flexible knee joint was designed using solid isotropic material with penalization (SIMP) model and finite element analysis based on biomechanics features of lower limbs. The exoskeleton joint is rigid during stance period to help reduce the body weight load on the knee joint, and it shows flexibility during swing period to adapt to physiological joint kinematic characteristics of body. Therefore no extra force is loaded on the body joint. The walking assistance module was designed and added on the basis of this wearable flexible knee-joint exoskeleton mechanism. The corresponding assisting force control method was researched to realize walking assistance. The performance tests show that the knee joint protection exoskeleton can reduce the knee joint load up to 110 N. The weight of the wearable exoskeleton is 639 g, therefore the weight loss ratio is significant. The exoskeleton system with walking assistance module weights 4.8 kg. The walking test proves that the system has the ability to assist walking.

Key words: flexible exoskeleton    wearable exoskeleton    knee-joint protection    weight reduction and support    walking assistance
收稿日期: 2020-10-11 出版日期: 2021-03-09
CLC:  TP 242.6  
基金资助: 国家自然科学基金资助项目(51805469);浙江省食品药品监管系统科技计划资助项目(2020016)
通讯作者: 杨巍     E-mail: ycj@zju.edu.cn;zjuaway@163.com
作者简介: 杨灿军(1969—),男,教授,博士,从事人机智能系统研究. orcid.org/0000-0002-3712-0538. E-mail: ycj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨灿军
彭桢哲
徐铃辉
杨巍

引用本文:

杨灿军,彭桢哲,徐铃辉,杨巍. 柔性膝关节保护外骨骼及其行走助力方法设计[J]. 浙江大学学报(工学版), 2021, 55(2): 213-221.

Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.001        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/213

图 1  人体运动面与下肢自由度分布[13]
关节运动 步行运动范围[14] 运动极限[15]
髋关节旋内/旋外 1.6°/13.2° 50°/40°
髋关节屈/伸 32.2°/22.5° 120°/30°
髋关节外展/内收 7.9°/6.4° 20°/45°
膝关节屈/伸 73.5°/0° 150°/0°
踝关节背屈/趾屈 14.1°/20.6° 20°/40°
踝关节内/外翻 16.5°/25.7° 20°/35°
表 1  下肢各关节的运动范围
大腿长/mm 大腿围/mm 小腿围/mm 体重/kg
$ {452}_{+30}^{-29} $ $ {408}_{+51}^{-44} $ $ {353}_{+49}^{-49} $ $ 56 $
表 2  人体物理参数
图 2  柔性关节广义材料密度云图[13]
图 3  柔性外骨骼关节设计图
图 4  SIMP法的设计与验证
图 5  优化后的应力与形变云图
图 6  可穿戴式外骨骼结构设计
图 7  髋关节助力机构设计
图 8  髋关节与膝关节助力的绳端位移曲线与关节角度
图 9  外骨骼整机系统穿戴效果图
图 10  应力等效试样及测试数据
图 11  穿戴外骨骼膝关节保护结构进行试验
图 12  膝关节转角与外骨骼关节应变关系
序号 测试条件 ε1 /10?6 P /N
1 腿环接触涤纶衣物 1066 52.72
2 黏接硬橡胶接触衣物,松束缚 1150 56.87
3 黏接硬橡胶,中等束缚 1445 71.46
4 黏接硬橡胶,紧束缚 2083 103.00
表 3  不同条件下柔性关节上载荷
图 13  加入单侧负载前后输出电流和绳端位移的变化
1 任兴宽, 杨鹏, 吴国强, 等 骨性膝关节炎治疗研究进展[J]. 世界最新医学信息文摘, 2019, (92): 74- 75
REN Xing-kuan, YANG Peng, WU Guo-qiang, et al Research progress in treatment of knee osteoarthritis[J]. World Latest Medicine Information, 2019, (92): 74- 75
2 MESSIER S, GUTEKUNST D, DAVIS C, et al Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis[J]. Arthritis and Rheumatology, 2005, 52 (7): 2026- 2032
doi: 10.1002/art.21139
3 范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海: 上海交通大学, 2014.
FAN Yuan-jie. Study on lower limb exoskeleton for rehabilitation based on multi-source information fusion including sEMG & interactive force and its clinical trail [D]. Shanghai: Shanghai Jiao Tong University, 2014.
4 史延雷, 张明路, 张小俊, 等 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27 (18): 2494- 2499
SHI Yan-lei, ZHANG Ming-lu, ZHANG Xiao-jun, et al Design and analysis of a rotary-type robot flexible joint[J]. China Mechanical Engineering, 2016, 27 (18): 2494- 2499
doi: 10.3969/j.issn.1004-132X.2016.18.014
5 朱蒙, 管小荣, 李杨, 等 偏瘫下肢外骨骼结构设计与仿真分析[J]. 兵器装备工程学报, 2019, (11): 160- 165
ZHU Meng, GUAN Xiao-rong, LI Yang, et al Design and simulation analysis of lower-extremity exoskeleton structure for hemiplegia[J]. Journal of Ordnance Equipment Engineering, 2019, (11): 160- 165
doi: 10.11809/bqzbgcxb2019.11.032
6 IKEUCHI Y, ASHIHARA J, HIKI Y, et al. Walking assist device with bodyweight support system [C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 4073-4079.
7 TAKETOMI T, SANKAI Y. Stair ascent assistance for cerebral palsy with robot suit HAL [C]// 2012 IEEE/SICE International Symposium on System Integration. Fukuoka: IEEE, 2012: 331-336.
8 LEE Y, KIM Y, LEE J, et al Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2058- 2069
doi: 10.1109/TMECH.2017.2718999
9 BASER O, KIZILHAN H, KILIC E Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41 (5): 1- 15
10 LEE K, GUO J Kinematic and dynamic analysis of an anatomically based knee joint[J]. Journal of Biomechanics, 2010, 43 (7): 1231- 1236
doi: 10.1016/j.jbiomech.2010.02.001
11 STIENEN A, HEKMAN E, HELM F, et al Self-aligning exoskeleton axes through decoupling of joint rotations and translations[J]. IEEE Transactions on Robotics, 2009, 25 (3): 628- 633
doi: 10.1109/TRO.2009.2019147
12 LING Z K, GUO H Q, BOERSMA S Analytical study on the kinematic and dynamic behaviors of a knee joint[J]. Medical Engineering and Physics, 1997, 19 (1): 29- 36
doi: 10.1016/S1350-4533(96)00031-8
13 王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D]. 杭州: 浙江大学, 2016.
WANG Dong-hai. A passive gait-based weight-support compliant lower-extremity-exoskeleton [D]. Hangzhou: Zhejiang University, 2016.
14 KIRTLE C. CGA normative gait database, Hong Kong Polytechnic University [EB/OL]. http://guardian.curtin.edu.au/cga/data/.
15 JOSE L. Wearable robots: biomechatronic exoskeletons [M]. West Sussex: John Wiley & Sons, 2008: 67-68.
16 钱竞光, 宋雅伟, 叶强, 等 步行动作的生物力学原理及其步态分析[J]. 南京体育学院学报: 自然科学版, 2006, 4 (12): 1- 7
QIAN Jing-guang, SONG Ya-wei, YE Qiang, et al The biomechanics principle of walking and analysis on gaits[J]. Journal of Nanjing Sports Institute: Natural Science, 2006, 4 (12): 1- 7
17 杨巍, 杨灿军, 马张翼, 等 基于振荡器的助行外骨骼跟随助力控制研究[J]. 机电工程, 2019, 10 (10): 1007- 1012
YANG Wei, YANG Can-jun, MA Zhang-yi, et al Following assistance control of walking assist exoskeleton based on oscillator[J]. Journal of Mechanical and Electrical Engineering, 2019, 10 (10): 1007- 1012
doi: 10.3969/j.issn.1001-4551.2019.10.001
18 王旭. 织物和皮肤间的摩擦性能研究[D]. 上海: 东华大学, 2011.
WANG Xu. Fricition proporty between fabric and human skin [D]. Shanghai: Donghua University, 2011.
19 国家技术监督局. 中国成年人人体尺寸: GB/T 10000—1988 [S]. 北京: 中国标准出版社, 1988.
[1] 张峻宁,苏群星,刘鹏远,王正军,谷宏强. 基于空间约束的自适应单目3D物体检测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1138-1146.
[2] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[3] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[4] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[5] 王立军,黄忠朝,赵于前. 基于超像素分割的空间相关主题模型及场景分类方法[J]. 浙江大学学报(工学版), 2015, 49(3): 402-408.
[6] 曹腾,项志宇,刘济林. 基于视差空间V-截距的障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(3): 409-414.
[7] 卢维, 项志宇, 于海滨, 刘济林. 基于自适应多特征表观模型的目标压缩跟踪[J]. 浙江大学学报(工学版), 2014, 48(12): 2132-2138.
[8] 陈明芽, 项志宇, 刘济林. 单目视觉自然路标辅助的移动机器人定位方法[J]. J4, 2014, 48(2): 285-291.
[9] 林颖, 龚小谨, 刘济林. 基于单位视球的鱼眼相机标定方法[J]. J4, 2013, 47(8): 1500-1507.
[10] 王会方, 朱世强, 吴文祥. 谐波驱动伺服系统的改进自适应鲁棒控制[J]. J4, 2012, 46(10): 1757-1763.
[11] 欧阳柳,徐进,龚小谨,刘济林. 基于不确定性分析的视觉里程计优化[J]. J4, 2012, 46(9): 1572-1579.
[12] 马丽莎, 周文晖, 龚小谨, 刘济林. 基于运动约束的泛化Field D*路径规划[J]. J4, 2012, 46(8): 1546-1552.
[13] 路丹晖, 周文晖, 龚小谨, 刘济林. 视觉和IMU融合的移动机器人运动解耦估计[J]. J4, 2012, 46(6): 1021-1026.
[14] 徐进,沈敏一,杨力,王炜强,刘济林. 基于双目光束法平差的机器人定位与地形拼接[J]. J4, 2011, 45(7): 1141-1146.
[15] 陈家乾,柳玉甜,何衍,蒋静坪. 基于栅格模型和样本集合的动态环境地图创建[J]. J4, 2011, 45(5): 794-798.