计算机与控制工程 |
|
|
|
|
聚焦难样本的区分尺度的文字检测方法 |
林泓( ),卢瑶瑶 |
武汉理工大学 计算机科学与技术学院,湖北 武汉 430063 |
|
Scale differentiated text detection method focusing on hard examples |
Hong LIN( ),Yao-yao LU |
College of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China |
1 |
姚聪. 自然图像中文字检测与识别研究[D]. 武汉: 华中科技大学, 2014. YAO Cong. Research on text detection and recognition in natural images [D]. Wuhan: Huazhong University of Science and Technology, 2014.
|
2 |
杨飞 自然场景图像中的文字检测综述[J]. 电子设计工程, 2016, 24 (24): 165- 168 YANG Fei Detecting text in natural scene images were reviewed[J]. Electronic Design Engineering, 2016, 24 (24): 165- 168
|
3 |
DONOSER M, BISCHOF H. Efficient maximally stable extremal region (MSER) tracking [C]// Computer Vision and Pattern Recognition. New York: IEEE, 2006: 553-560.
|
4 |
EPSHTEIN B, OFEK E, WEXLER Y. Detecting text in natural scenes with stroke width transform [C]// Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2963-2970.
|
5 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// International Conference on Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 1097-1105.
|
6 |
周飞燕, 金林鹏, 董军 卷积神经网络研究综述[J]. 计算机学报, 2017, 40 (6): 1229- 1251 ZHOU Fei-yan, JIN Lin-peng, DONG Jun Review of convolution neural network[J]. Chinese Journal of Computers, 2017, 40 (6): 1229- 1251
doi: 10.11897/SP.J.1016.2017.01229
|
7 |
TIAN Z, HUANG W, HE T, et al. Detecting text in natural image with connectionist text proposal network [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 56-72.
|
8 |
YIN X C, YIN X, HUANG K, et al Robust text detection in natural scene images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 970- 983
doi: 10.1109/TPAMI.2013.182
|
9 |
NEUMANN L, MATAS J Real-time lexicon-free scene text localization and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (9): 1872- 1885
doi: 10.1109/TPAMI.2015.2496234
|
10 |
BUTA M, NEUMANN L, MATAS J. Fastext: efficient unconstrained scene text detector [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1206-1214.
|
11 |
MA J, SHAO W, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals [J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
|
12 |
ZHOU X, YAO C, WEN H, et al. EAST: an efficient and accurate scene text detector [C]// Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2642-2651.
|
13 |
LIAO M, SHI B, BAI X, et al. TextBoxes: a fast text detector with a single deep neural network [C]// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 4161-4167.
|
14 |
HONG S, ROH B, KIM K H, et al. PVANet: lightweight deep neural networks for real-time object detection [C]// Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. arXiv: 1611.08588.
|
15 |
DENG D, LIU H, LI X, et al. PixelLink: detecting scene text via instance segmentation [C]// Thirty-Second AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2018: 6773-6780.
|
16 |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining [C]// Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 761-769.
|
17 |
ANTHIMOPOULOS M, GATOS B, PRATIKAKIS I A two-stage scheme for text detection in video images[J]. Image and Vision Computing, 2010, 28 (9): 1413- 1426
doi: 10.1016/j.imavis.2010.03.004
|
18 |
LIN T Y, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, PP (99): 2999- 3007
|
19 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
20 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Computer Vision and Pattern Recognition. Amsterdam: IEEE, 2016: 770-778.
|
21 |
LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation [C]// Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017, 1925-1934.
|
22 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Advances in Neural Information Processing Systems. Montreal: ACM, 2015: 91-99.
|
23 |
UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171
doi: 10.1007/s11263-013-0620-5
|
24 |
ZITNICK C L, DOLLAR P. Edge boxes: locating object proposals from edges [C]// European Conference on Computer Vision. Zurich: Springer, 2014: 391-405.
|
25 |
VEIT A, MATERA T, NEUMANN L, et al. Coco-text: dataset and benchmark for text detection and recognition in natural images [C]// Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. arXiv: 1601.07140.
|
26 |
KARATZAS D, SHAFAIT F, UCHIDA S, et al. Robust reading competition [C]// 12th International Conference on Document Analysis and Recognition. Washington: IEEE, 2013: 1484-1493.
|
27 |
KARATZAS D, GOMEZ-BIGORDA L, NICOLAOU A, et al. Competition on robust reading [C]// 13th International Conference on Document Analysis and Recognition. Nancy: IEEE, 2015: 1156-1160.
|
28 |
WOLF C, JOLION J M Object count/area graphs for the evaluation of object detection and segmentation algorithms[J]. International Journal of Document Analysis and Recognition, 2006, 8 (4): 280- 296
doi: 10.1007/s10032-006-0014-0
|
29 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|