Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 608-614    DOI: 10.3785/j.issn.1008-973X.2021.04.002
计算机技术、电信技术     
基于行为感知的用户画像技术
尤明辉(),殷亚凤*(),谢磊,陆桑璐
南京大学 计算机软件新技术国家重点实验室,江苏 南京 210023
User profiling based on activity sensing
Ming-hui YOU(),Ya-feng YIN*(),Lei XIE,Sang-lu LU
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
 全文: PDF(873 KB)   HTML
摘要:

为了在保护用户隐私的同时构建用户画像,提出基于行为感知的用户画像技术. 采用智能手机内置的惯性传感器,可以感知识别用户使用手机的行为(如浏览阅读、打字聊天、通话等). 通过识别的用户行为挖掘用户特性,如性别、社交性格、压力状态等,构建初步的用户画像. 实验结果表明,利用该方法能够较好地识别用户行为并构建用户画像,其中行为识别的准确率为87.2%,针对性别、社交性格、压力状态3个具体用户特性的预测准确率分别为81.8%、72.7%、72.7%.

关键词: 智能手机惯性传感器行为感知用户特性挖掘用户画像    
Abstract:

A user profiling method based on activity sensing was proposed in order to build user profile while protecting their privacy. The built-in inertial sensors of the smart phone were used to sense the user activities (e.g., browsing, typing, calling etc.). Then the recognized activities were used to mine user characteristics, such as social personality and stress level, in order to build a preliminary user profile. The experimental results show that the method can recognize user activities and build user profiles. The accuracy of activity recognition was 87.2%, while the accuracy of predictions for the three user characteristics in gender, social personality, and stress level was 81.8%, 72.7%, 72.7%, respectively.

Key words: smartphone    inertial sensor    activity sensing    user characteristic mining    user profiling
收稿日期: 2021-01-22 出版日期: 2021-05-07
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(61802169,61872174,61832008,61902175,61906085);江苏省自然科学基金资助项目(BK20180325,BK20190293);江苏省重点研发基金资助项目(BE2018116);软件新技术与产业化协同创新中心资助项目
通讯作者: 殷亚凤     E-mail: mf20330111@smail.nju.edu.cn;yafeng@nju.edu.cn
作者简介: 尤明辉(1998—),男,硕士生,从事智能感知的研究. orcid.org/0000-0003-3493-1121. E-mail: mf20330111@smail.nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
尤明辉
殷亚凤
谢磊
陆桑璐

引用本文:

尤明辉,殷亚凤,谢磊,陆桑璐. 基于行为感知的用户画像技术[J]. 浙江大学学报(工学版), 2021, 55(4): 608-614.

Ming-hui YOU,Ya-feng YIN,Lei XIE,Sang-lu LU. User profiling based on activity sensing. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 608-614.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.002        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/608

图 1  基于行为感知实现用户画像模型框架
图 2  使用卡尔曼滤波降噪
图 3  对时序数据进行数据分割
时域特征 计算公式
均值 $\mu =\dfrac{1}{N}{\displaystyle\sum }_{i=1}^{{N} }{C}_{i}$
标准差 $\sigma =\sqrt{\dfrac{1}{N}{\displaystyle\sum }_{i=1}^{N}{\left({C}_{i}-\mu\right)}^{2} }$
最大值 $f_{{\rm{max}}}={\rm{max} }\;\left\{ {C}_{i}|i\in \left(1, N\right)\right\}$
最小值 $f_{{\rm{min}}}={\rm{min} }\;\left\{ {C}_{i}|i\in \left(1, N\right)\right\}$
过均值率 $f_{{\rm{above}}}=\dfrac{ {\rm{num} }\;\left\{ {C}_{i}|i\in \left(1, N\right),{C}_{i} > \mu\right\}}{N}$
表 1  所选择的时域特征
频域特征 计算公式
均值 ${\mu }_{{\rm{amp}}}=\dfrac{1}{N}{\displaystyle\sum }_{i=1}^{{N} }{G}_{i}$
标准差 ${\sigma }_{{\rm{amp}}}=\sqrt{\dfrac{1}{N}{\displaystyle\sum }_{i=1}^{N}{\left({G}_{i}-{\mu }_{{\rm{amp}}}\right)}^{2} }$
峰度 ${\gamma }_{{\rm{amp}}}=\dfrac{1}{N}{\displaystyle\sum }_{i=1}^{N}{\left[\dfrac{ {G}_{i}-{\mu }_{{\rm{amp}}} }{ {\sigma }_{{\rm{amp}}} }\right]}^{4}- 3$
表 2  所选择的频域特征
图 4  特征向量的具体形式
图 5  用户画像内容与用户标签形式
行为类别 浏览阅读 游戏 打字聊天 通话 视频
浏览阅读 77.6% 0.0% 16.5% 2.0% 3.9%
游戏 1.5% 89.9% 2.0% 0.3% 6.3%
打字聊天 5.2% 4.0% 87.9% 2.4% 0.5%
通话 4.8% 0.0% 5.1% 88.7% 1.4%
视频 3.7% 3.5% 0.2% 0.2% 92.4%
表 3  行为感知预测正确率的混淆矩阵
图 6  不同用户在行为感知上的正确率
用户特性 Acc /%
性别 81.8
社交性格 72.7
压力状态 72.7
表 4  对用户特性分类的准确率
图 7  不同数据收集时间下对用户特性预测正确率
1 ZHAO S, LI S, RAMOS J, et al User profiling from their use of smartphone applications: a survey[J]. Pervasive and Mobile Computing, 2019, 59: 101052
doi: 10.1016/j.pmcj.2019.101052
2 赵莎. 基于大规模手机感知数据的用户特性挖掘[D]. 杭州: 浙江大学, 2017.
ZHAO Sha. User understanding based on large-scale smartphone-sensed data [D]. Hangzhou: Zhejiang University, 2017.
3 CHOUDHURY T, CONSOLVO S, HARRISON B, et al The mobile sensing platform: an embedded activity recognition system[J]. IEEE Pervasive Computing, 2008, 7 (2): 32- 41
doi: 10.1109/MPRV.2008.39
4 何卫华. 人体行为识别关键技术研究[D]. 重庆: 重庆大学, 2012.
HE Wei-hua. Research on key technologies of human activity sensing [D]. Chongqing: Chongqing University, 2012.
5 LANE N D, MILUZZO E, LU H, et al A survey of mobile phone sensing[J]. IEEE Communications Magazine, 2010, 48 (9): 140- 150
doi: 10.1109/MCOM.2010.5560598
6 PL?TZ T, HAMMERLA N Y, OLIVIER P. Feature learning for activity recognition in ubiquitous computing [C]// International Joint Conference on Artificial Intelligence. Barcelona: [s.n.], 2011.
7 PREECE S J, GOULERMAS J Y, KENNEY L P J, et al A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data[J]. IEEE Transactions on Biomedical Engineering, 2009, 56 (3): 871- 879
doi: 10.1109/TBME.2008.2006190
8 RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data [C]// Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference. Pittsburgh: AAAI, 2005.
9 CASALE P, PUJOL O, RADEVA P. Human activity recognition from accelerometer data using a wearable device [C]// Iberian Conference on Pattern Recognition and Image Analysis. Berlin: Springer, 2011: 289-296.
10 SENEVIRATNE S, SENEVIRATNE A, MOHAPATRA P, et al Predicting user traits from a snapshot of apps installed on a smartphone[J]. ACM Sigmobile Mobile Computing and Communications Review, 2014, 18 (2): 1- 8
doi: 10.1145/2636242.2636244
11 ZHAO S, RAMOS J, TAO J, et al. Discovering different kinds of smartphone users through their application usage behaviors [C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 498–509.
12 O′DONOGHUE J, HERBERT J. Profile based sensor data acquisition in a ubiquitous medical environment [C]// 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops. Pisa: IEEE, 2006.
13 FARSEEV A, CHUA T S. Tweetfit: fusing multiple social media and sensor data for wellness profile learning [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 95–101.
14 RAHMAN M A, EL SADDIK A, GUEAIEB W Augmenting context awareness by combining body sensor networks and social networks[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 60 (2): 345- 353
15 SPARACINO F The museum wearable: real-time sensor-driven understanding of visitors' interests for personalized visually-augmented museum experiences[J]. Institution Archives and Museum Informatics, 2002, 17: 41
16 SZTYLER T, V?LKER J, CARMONA J, et al. Discovery of personal processes from labeled sensor data: an application of process mining to personalized health care [C]// Proceedings of the International Workshop on Algorithms and Theories for the Analysis of Event Data: Brussels: [s. n.], 2015: 31-46.
17 KALMAN R E A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82D: 35- 45
18 张宪超, 武继刚, 蒋增荣, 等 离散傅里叶变换的算术傅里叶变换算法[J]. 电子学报, 2000, 28 (5): 105- 107
ZHANG Xian-chao, WU Ji-gang, JIANG Zeng-rong, et al An algorithm for computing DFT using arithmetic fourier transform[J]. Acta Electronica Sinica, 2000, 28 (5): 105- 107
19 OPUSZKO M, BERGER G, RUHLAND J. The impact of public scandals on social media: a sentiment analysis on Youtube to detect the influence on reputation [C]// 2019 6th European Conference on Social Media. Belgium: ACI, 2019: 36.
[1] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.