计算机科学与人工智能 |
|
|
|
|
多源数据跨国人口迁移预测 |
汪子龙( ),王柱*( ),於志文,郭斌,周兴社 |
西北工业大学 计算机学院,陕西 西安 710129 |
|
Transnational population migration forecast with multi-source data |
Zi-long WANG( ),Zhu WANG*( ),Zhi-wen YU,Bin GUO,Xing-she ZHOU |
College of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China |
引用本文:
汪子龙,王柱,於志文,郭斌,周兴社. 多源数据跨国人口迁移预测[J]. 浙江大学学报(工学版), 2019, 53(9): 1759-1767.
Zi-long WANG,Zhu WANG,Zhi-wen YU,Bin GUO,Xing-she ZHOU. Transnational population migration forecast with multi-source data. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1759-1767.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.015
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1759
|
1 |
BILSBORROW R E, HUGO G, OBERAI A S International migration statistics: guidelines for improving data collection systems[J]. International Labour Office, 1997, 33 (1): 204
|
2 |
COLEMAN D The twilight of the census[J]. Population and Development Review, 2013, 38 (Suppl.1): 334- 351
|
3 |
JAMES R, ARKADIUSZ W, JONATHAN J, et al Integrated modeling of European migration[J]. Journal of the American Statistical Association, 2013, 108 (503): 801- 819
doi: 10.1080/01621459.2013.789435
|
4 |
KUPISZEWSKA D, WI?NIOWSKI A Availability of statistical data on migration and migrant population and potential supplementary sources for data estimation[J]. Jornal Brasileiro de Patologia e Medicina Laboratorial, 2003, 43 (43): 235- 240
|
5 |
GROENEWOLD W G F, BILSBORROW R, BONIFAZI C, et al Design of samples for international migration surveys: methodological considerations and lessons learned from a multi-country study in Africa and Europe[J]. Imiscoe Research, 2008, 293- 312
|
6 |
ABEL G J Estimating global migration flow tables using place of birth data[J]. Demographic Research, 2013, 28 (2): 505- 546
|
7 |
ABEL G J Estimates of global bilateral migration flows by gender between 1960 and 2015[J]. International Migration Review, 2017, (11), 52 (3): 809- 852
|
8 |
ABEL G J, SANDER N Quantifying global international migration flows[J]. Science, 2014, 343 (6178): 1520- 1522
doi: 10.1126/science.1248676
|
9 |
HAWELKA B, SITKO I, BEINAT E, et al Geo-located Twitter as proxy for global mobility patterns[J]. Cartography and Geographic Information Science, 2014, 41 (3): 260- 271
doi: 10.1080/15230406.2014.890072
|
10 |
LENORMAND M, TUGORES A, COLET P, et al Tweets on the road[J]. PLoS One, 2014, 9 (8): e105407
doi: 10.1371/journal.pone.0105407
|
11 |
WANG W, DAVID R, SHARAD G, et al Forecasting elections with non-representative polls[J]. International Journal of Forecasting, 2015, 31 (3): 980- 991
doi: 10.1016/j.ijforecast.2014.06.001
|
12 |
RAYMER J, ABEL G, SMITH P W F Combining census and registration data to estimate detailed elderly migration flows in England and Wales[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2007, 170 (4): 891- 908
doi: 10.1111/rssa.2007.170.issue-4
|
13 |
DORIGO G, TOBLER W Push-pull migration laws[J]. Annals of the Association of American Geographers, 1983, 73 (1): 1- 17
doi: 10.1111/j.1467-8306.1983.tb01392.x
|
14 |
HU X, MANAGEMENT S O Analysis on the motivation and obstruction of in-situ urbanization in China based on the push and pull theory[J]. Journal of Hebei Normal University of Science and Technology, 2017, 16 (4): 38- 45
|
15 |
MARKOVSKY, IV AN, VAN H, et al Overview of total least-squares methods[J]. Signal Processing, 2013, 87 (10): 2283- 2302
|
16 |
ESCANCIANO J C Goodness-of-fit tests for linear and nonlinear time series models[J]. Publications of the American Statistical Association, 2006, 101 (474): 531- 541
doi: 10.1198/016214505000001050
|
17 |
ALI B N, DANNY H, LUIZ F C Towards an early soft-ware estimation using log-linear regression and a multilayer perceptron model[J]. The Journal of Systems and Software, 2013, 86 (1): 144- 160
doi: 10.1016/j.jss.2012.07.050
|
18 |
QIAO C, CHEN H B, JING W F, et al Towards establishing a meaningful and practical dynamics results for the unified RNN model[J]. Neurocomputing, 2015, 157: 315- 322
doi: 10.1016/j.neucom.2014.12.007
|
19 |
廖大强, 印鉴 基于多分支RNN快速学习算法的混沌时间序列预测[J]. 计算机应用研究, 2015, 32 (2): 403- 408 LIAO Da-qiang, YIN Jian Chaotic time series of fast learning algorithm of multi branch prediction based on RNN[J]. Application Research of Computers, 2015, 32 (2): 403- 408
doi: 10.3969/j.issn.1001-3695.2015.02.019
|
20 |
LI Y F, CAO H Prediction for tourism flow based on LSTM neural network[J]. Procedia Computer Science, 2018, 129: 227- 283
|
21 |
张亮, 黄曙光, 石昭祥, 等 基于LSTM型RNN的CAPTCHA识别方法[J]. 模式识别与人工智能, 2011, 24 (1): 40- 47 ZHANG Liang, HUANG Shu-guang, SHAO Zhao-xiang, et al CAPTCHA recognition method based on RNN of LSTM[J]. Pattern Recognition and Artificial Intelligence, 2011, 24 (1): 40- 47
doi: 10.3969/j.issn.1003-6059.2011.01.005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|