生物医学工程 |
|
|
|
|
基于卷积神经网络的多类运动想象脑电信号识别 |
刘近贞1,2(),叶方方1,2,熊慧1,2,*() |
1. 天津工业大学 控制科学与工程学院,天津 300387 2. 天津工业大学 电工电能新技术天津市重点实验室,天津 300387 |
|
Recognition of multi-class motor imagery EEG signals based on convolutional neural network |
Jin-zhen LIU1,2(),Fang-fang YE1,2,Hui XIONG1,2,*() |
1. School of Control Science and Engineering, TIANGONG University, Tianjin 300387, China 2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, TIANGONG University, Tianjin 300387, China |
1 |
GRAIMANN B, ALLISON B, PFURTSCHELLER G. Brain-computer interface: a gentle introduction [M]. The frontiers collection. Berlin, Heidelberg: Springer, 2009: 1-27.
|
2 |
ADAMS M, BEN-SALEM S, ISLAM Z, et al. Towards an SSVEP-BCI controlled smart home [C]// 2019 IEEE International Conference on Systems Man and Cybernetics (SMC). Bari: IEEE, 2019: 2737-2742.
|
3 |
CHEN L, WANG Z P, HE F, et al. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse [C]// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan: IEEE, 2015: 1152-1155.
|
4 |
WONG C M, TANG Q, WAN F, et al. A multi-channel SSVEP-based BCI for computer games with analogue control [C]// Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Application (CIVEMSA). Shenzhen: IEEE, 2015: 1-6.
|
5 |
PFURTSCHELLER G, LOPES DA SILVA F H Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clinical Neurophysiology, 1999, 110 (11): 1842- 1857
doi: 10.1016/S1388-2457(99)00141-8
|
6 |
巫嘉陵, 高忠科 脑机接口技术及其在神经科学中的应用[J]. 中国现代神经疾病杂志, 2021, 21 (1): 3- 8 WU Jia-ling, GAO Zhong-ke Brain-computer interface technology and its applications in neuroscience[J]. Chinese Journal of Modern Neurological Diseases, 2021, 21 (1): 3- 8
doi: 10.3969/j.issn.1672-6731.2021.01.002
|
7 |
BAIG M Z, ASLAML N, SHUM H P H Filtering techniques for channel selection in motor imagery EEG applications: a survey[J]. Artificial Intelligence Review, 2020, 53 (3): 1207- 1232
|
8 |
霍首君, 郝琰, 石慧宇, 等 基于深度卷积网络的运动想象脑电信号模式识别[J]. 计算机应用, 2020, 41 (4): 1042- 1048 HUO Shou-jun, HAO Yan, SHI Hui-yu, et al Pattern recognition of motor imagery EEG based on deep convolutional networks[J]. Computer Applications, 2020, 41 (4): 1042- 1048
|
9 |
CHATTERJEE R, BANDYOPADHYAY T, SANYAL D K, et al. Comparative analysis of feature extraction techniques in motor imagery EEG signal classification [C]// Proceedings of First International Conference on Smart System, Innovations and Computing. Smart Innovation, Systems and Technologies. Jaipur: Springer, 2018, 79: 73-83.
|
10 |
WANG Y J, GAO S K, GAO X R, et al. Common spatial pattern method for channel selection in motor imagery based brain-computer interface [C]// International Conference of the Engineering in Medicine and Biology Society. Shanghai: IEEE, 2005: 5392-5395.
|
11 |
ANG K K, CHINY C, ZHANG H H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface [C]// Proceedings of the IEEE International Joint Conference on Neural Networks. Hong Kong: IEEE, 2008: 2391–2398.
|
12 |
施锦河, 沈继忠, 王攀 四类运动想象脑电信号特征提取与分类算法[J]. 浙江大学学报:工学版, 2012, 46 (2): 338- 344 SHI Jin-he, SHEN Ji-zhong, WANG Pan Feature extraction and classification of four-class motor imagery EEG data[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (2): 338- 344
doi: 10.3785/j.issn.1008-973X.2012.02.025
|
13 |
TYAGI A, NEHRA V. Time frequency analysis of non-stationary motor imagery EEG signal [C]// 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). Gurgaon: IEEE, 2017: 44-50.
|
14 |
LIU J, CHENG Y, ZHANG W. Deep learning EEG response representation for brain computer interface [C]// 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 3518-3523.
|
15 |
KUMAR S, SHARMA A, MAMUN K, et al. A deep learning approach for motor imagery EEG signal classification [C]// 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). Nadi: IEEE, 2016: 34-39.
|
16 |
LEE H K, CHOI Y. A convolutional neural networks scheme for classification of motor imagery EEG based on wavelet time-frequency image [C]// 2018 International Conference on Information Networking (ICOIN). Chiang Mai: IEEE, 2018: 906-909.
|
17 |
ZHU X Y, LI P Y, LI C B, et al Separated channel convolutional neural network to realize the training free motor imagery BCI systems[J]. Biomedical Signal Processing and Control, 2019, 49: 396- 403
doi: 10.1016/j.bspc.2018.12.027
|
18 |
YANG T, PHUA K S, YU J H, et al. Image-based motor imagery EEG classification using convolutional neural network [C]// 2019 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). Chicago: IEEE, 2019: 1-4.
|
19 |
LI Y, ZHANG X R, LEI M Y, et al A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding[J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2019, 27 (6): 1170- 1180
doi: 10.1109/TNSRE.2019.2915621
|
20 |
WU H, NIU Y, LI F, et al A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification[J]. Frontiers in Neuroscience, 2019, 26 (13): 1275
|
21 |
ROY S, MCCREADIE K, PRASAD G. Can a single model deep learning approach enhance classification accuracy of an EEG-based brain-computer interface? [C]// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari: IEEE, 2019: 1317-1321.
|
22 |
TANG X B, ZHAO J C, FU W L, et al. A novel classification algorithm for MI-EEG based on deep learning [C]// 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing: IEEE, 2019: 606-611.
|
23 |
SHEN Y R, LU H T, JIA J. Classification of motor imagery EEG signal with deep learning models [C]// International Conference on Intelligent Science and Big Data Engineering. Dalian: Springer, 2017: 181-190.
|
24 |
LASHGARI E, LIANG D, MAOZ U Data augmentation for deep-learning-based electroencephalography[J]. Journal of Neuroscience Methods, 2020, 346: 108885
doi: 10.1016/j.jneumeth.2020.108885
|
25 |
BASHIVAN P, RISH I, YEASIN M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks [EB/OL]. (2015-11-19) [2020-12-28]. https://arxiv.org/abs/1511.06448v3.
|
26 |
CHANG L, DENG X M, ZHOU M Q, et al Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42 (9): 1300- 1312
|
27 |
DING Y, ROBINSON N, ZENG Q H, et al. TSception: a deep learning framework for emotion detection using EEG [EB/OL]. (2020-04-02) [2020-12-28]. https://arxiv.org/abs/2004.02965.
|
28 |
王卫星, 孙守迁, 李超, 等 基于卷积神经网络的脑电信号上肢运动意图识别[J]. 浙江大学学报:工学版, 2017, 51 (7): 1381- 1389 WANG Wei-xing, SUN Shou-qian, LI Chao, et al Recognition of upper limb motion intention of EEG signal based on convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1381- 1389
|
29 |
TANGERMANN M, MÜLLER K R, AERTSEN A, et al Review of the BCI competition IV[J]. Frontiers Neuroscience, 2012, 6: 55
|
30 |
LI D L, WANG J H, XU J C, et al Densely feature fusion based on convolutional neural networks for motor imagery EEG classification[J]. IEEE Access, 2019, 7: 132720- 132730
doi: 10.1109/ACCESS.2019.2941867
|
31 |
DAI G, ZHOU J, HUANG J, et al HS-CNN: a CNN with hybrid convolutional scale for EEG motor imagery classification[J]. Journal of Neural Engineering, 2020, 17 (1): 016025
doi: 10.1088/1741-2552/ab405f
|
32 |
MAJIDOV I, WHANGBO T Efficient classification of motor imagery electroencephalography signal using deep learning methods[J]. Sensors, 2019, 19 (7): 1736- 1749
doi: 10.3390/s19071736
|
33 |
ZHANG R, QUN Z, DOU L, et al A novel hybrid deep learning scheme for four-class motor imagery classification[J]. Journal of Neural Engineering, 2019, 16 (6): 1- 11
|
34 |
MA X G, WANG D S, LIU D H, et al DWT and CNN based multi-class motor imagery electroencephalographic signal recognition[J]. Journal of Neural Engineering, 2020, 17 (1): 016073
doi: 10.1088/1741-2552/ab6f15
|
35 |
GAUR P, PACHORI R B, WANG H, et al A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian Geometry[J]. Expert Systems with Applications, 2018, 95: 201- 211
doi: 10.1016/j.eswa.2017.11.007
|
36 |
XU J, ZHENG H, WANG J, et al Recognition of EEG signal motor imagery intention based on deep multi-view feature learning[J]. Sensors, 2020, 20 (12): 3496
doi: 10.3390/s20123496
|
37 |
XU M, YAO J, ZHANG Z, et al Learning EEG topographical representation for classification via convolutional neural network[J]. Pattern Recognition, 2020, 105: 107390
doi: 10.1016/j.patcog.2020.107390
|
38 |
SAKHAVI S, GUAN C, YAN S Learning temporal information for brain-computer interface using convolutional neural networks[J]. IEEE Transaction on Neural Networks and Learning Systems, 2018, 29 (11): 5619- 5629
doi: 10.1109/TNNLS.2018.2789927
|
39 |
ZHAO X, ZHANG H, ZHU G, et al A multi-branch 3D convolutional neural network for EEG-based motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27 (10): 2164- 2177
doi: 10.1109/TNSRE.2019.2938295
|
40 |
ANG K K, CHIN Z Y, WANG C, et al Filter bank common spatial pattern algorithm on BCI Competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6: 39
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|