计算机与控制工程 |
|
|
|
|
基于改进YOLOv5的电子元件表面缺陷检测算法 |
曾耀(),高法钦*() |
浙江理工大学 信息科学与工程学院,浙江 杭州 310018 |
|
Surface defect detection algorithm of electronic components based on improved YOLOv5 |
Yao ZENG(),Fa-qin GAO*() |
School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
1 |
王宇, 吴智恒, 邓志文, 等 基于机器视觉的金属零件表面缺陷检测系统[J]. 机械工程与自动化, 2018, (4): 210- 211+214 WANG Yu, WU Zhi-heng, DENG Zhi-wen, et al Metal component surface defect detection system based on machine vision[J]. Mechanical Engineering and Automation, 2018, (4): 210- 211+214
doi: 10.3969/j.issn.1672-6413.2018.04.088
|
2 |
HO C C, SU E, LI P, et al Machine vision and deep learning based rubber gasket defect detection[J]. Advances in Technology Innovation, 2020, 5 (2): 76- 83
doi: 10.46604/aiti.2020.4278
|
3 |
李璟钰, 肖俊良, 付晗, 等 基于机器视觉的导光板表面微小缺陷检测[J]. 信息系统工程, 2021, (2): 65- 69 LI Jing-yu, XIAO Jun-liang, FU Han, et al Detection of small defects on the surface of light guide plates[J]. China CIO News, 2021, (2): 65- 69
|
4 |
戴君洁. 基于机器视觉的目标识别和表面缺陷检测研究[D]. 大理: 大理大学, 2021. DAI Jun-jie. Research on object recognition and surface defect detection based on machine vision [D]. Dali: Dali University, 2021.
|
5 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [EB/OL]. [2022-04-07]. https://arxiv.org/pdf/1512.02325.pdf.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
8 |
GIRSHICK R. Fast R-CNN [C]// 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
|
9 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
10 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980−2988.
|
11 |
黄海新, 金鑫. 基于YOLOv4的小目标缺陷检测[J]. 电子世界, 2021(5): 146-147. HUANG Hai-xin, JIN Xin. Detection of small object defect based on YOLOv4 [J]. Electronics World, 2021(5): 146-147.
|
12 |
刘聪. 基于卷积神经网络的微小零件表面缺陷检测技术研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. LIU Cong. Research on surface defects detection of micro parts based on convolution neural network [D]. Harbin: Harbin University of Science and Technology, 2019.
|
13 |
陈绪浩. 基于深度学习的高速连接器高精度表面缺陷检测算法研究[D]. 成都: 电子科技大学, 2021. CHEN Xu-hao. Research on high precision surface defect detection algorithm of high speed connector based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
14 |
代牮, 赵旭, 李连鹏, 等 基于改进YOLOv5的复杂背景红外弱小目标检测算法[J]. 红外技术, 2022, 44 (5): 504- 512 DAI Jian, ZHAO Xu, LI Lian-peng, et al Improved YOLOv5-based infrared dim-small target detection under complex background[J]. Infrared Technology, 2022, 44 (5): 504- 512
|
15 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717.
|
16 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [EB/OL]. [2022-04-07]. https://arxiv.org/pdf/1911.09070.pdf.
|
17 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586.
|
18 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Lake City: IEEE, 2018: 8759-8768.
|
19 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2022-04-07]. https://arxiv.org/pdf/2004.10934.pdf.
|
20 |
GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation [EB/OL]. [2022-04-07]. https://arxiv.org/pdf/2012.07177.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|