Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 437-445    DOI: 10.3785/j.issn.1008-973X.2023.03.001
计算机与控制工程     
基于关系门控图卷积网络的方面级情感分析
程艳芬(),吴家俊,何凡
武汉理工大学 计算机与人工智能学院,湖北 武汉 430070
Aspect level sentiment analysis based on relation gated graph convolutional network
Yan-fen CHENG(),Jia-jun WU,Fan HE
School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(1096 KB)   HTML
摘要:

在方面级情感分析任务中,现有方法难以有效利用句法关系类型且性能依赖依存解析的准确性,为此提出注意力增强的关系门控图卷积神经网络(ARGCN)模型. 该模型将双向长短时记忆(BiLSTM)网络学习得到的句子顺序特征与依存概率矩阵相结合构建单词图;利用关系门控图卷积神经网络(RG-GCN)和注意力增强网络(AAN)分别从单词图和句子的顺序特征中获取方面词的情感特征;拼接RG-GCN和AAN的输出作为方面词最终的情感特征. 在数据集 SemEval 2014 、 Twitter 上进行对比实验和消融实验,结果表明ARGCN模型可以有效地利用关系类型,减小依存解析准确性对模型性能的影响,更好地建立方面词和意见词的联系,模型准确率优于所有基线模型.

关键词: 方面级情感分析图卷积网络注意力机制依存树门机制自然语言处理    
Abstract:

In aspect level sentiment analysis, existing methods struggle to effectively utilize the types of syntactic relations, and the performance of the model is affected by the accuracy of the dependency parsing. To resolve these challenges, an attention augmented relation gated graph convolutional network (ARGCN) model was proposed. The model uses a bidirectional long-short-term memory (BiLSTM) network to learn the sequential feature of sentences, and combines feature with the dependency probability matrix to construct a word graph. Then the model uses a relation gated graph convolutional network (RG-GCN) and an attention augmented network (AAN) to obtain the sentiment features of aspect words from the word graph and the sequential feature of sentences, respectively. Finally, the outputs of RG-GCN and AAN are concatenated as the final sentiment feature of aspect words. Contrastive experiments and ablation experiments were conducted on SemEval 2014 and Twitter datasets. And the results show that the ARGCN model can effectively utilize relation types, reduce the impact of dependency parsing accuracy on its performance, and better establish the connection between aspect words and opinion words. The model accuracy is better than all baseline models.

Key words: aspect level sentiment analysis    graph convolutional network    attention mechanism    dependency tree    gate mechanism    natural language processing
收稿日期: 2022-04-01 出版日期: 2023-03-31
CLC:  TP 391.1  
作者简介: 程艳芬(1970—),女,副教授,从事深度学习研究. orcid.org/0000-0003-0472-4543. E-mail: 995132428@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
程艳芬
吴家俊
何凡

引用本文:

程艳芬,吴家俊,何凡. 基于关系门控图卷积网络的方面级情感分析[J]. 浙江大学学报(工学版), 2023, 57(3): 437-445.

Yan-fen CHENG,Jia-jun WU,Fan HE. Aspect level sentiment analysis based on relation gated graph convolutional network. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 437-445.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.001        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/437

图 1  依存树结构图
图 2  注意力增强的关系门控图卷积网络的架构
图 3  依存概率矩阵和邻接矩阵的对比
图 4  注意力增强网络的架构
数据集 Ntr Nte
正面 中性 负面 正面 中性 负面
Restaurant 2164 637 807 727 196 196
Laptop 976 455 851 337 167 128
Twitter 1507 3016 1528 172 336 169
表 1  数据集的样本标签分布
%
模型 Restaurant Laptop Twitter
Acc MF1 Acc MF1 Acc MF1
CDT 82.30 74.02 77.19 72.99 74.66 73.66
IGATs 82.32 73.99 76.02 72.05 75.29 73.40
R-GAT 83.30 76.08 77.42 73.76 75.57 73.82
DGEDT 83.90 75.10 76.80 72.30 74.80 73.40
DualGCN 84.27 78.08 78.48 74.74 75.92 74.29
ARGCN 84.63 78.14 79.27 75.68 76.07 74.58
ARGCN+BERT 86.60 77.73 81.01 77.73 77.10 76.07
表 2  不同模型在3个数据集上的分类准确率和宏观F1分数对比
模型 Acc/%
Restaurant Laptop Twitter
GCN 82.31 75.95 74.59
RG-GCN 83.20 77.22 74.89
AAN 83.47 78.32 75.33
ARGCN 84.63 79.27 76.06
表 3  方面级情感分析与预测消融实验结果对比
序号 例句 GCN RG-GCN AAN ARGCN
1 The $\underline{{\rm{food}}}$ not worth the price. N√ N√ N√
2 The $\underline{{\rm{settings}}}$ are not user-friendly either. N√ N√
3 I thought that is will be fine, if I do some $\underline{{\rm{settings}}}$. O√ O√ O√
表 4  来自测试集的样例及各个模型的预测结果
图 5  样例2的依存树和注意力权重
模型 η/106 模型 η/106
CDT 0.41 RGAT 1.10
DualGCN 0.61 IGATs 1.81
ARGCN 0.64 DGEDT 2.15
表 5  常见模型的可训练参数量
图 6  注意力增强的关系门控图卷积网络模型在3个数据集上的性能随着层数的变化
图 7  注意力增强的关系门控图卷积网络模型的性能随正则系数的变化
1 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22)[2022-04-01]. https://arxiv.org/pdf/1609.02907.pdf.
2 VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018-02-04)[2022-04-01]. https://arxiv.org/pdf/1710.10903.pdf.
3 SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// European Semantic Web Conference. [S. l.]: Springer, 2018: 593-607.
4 KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 437-442.
5 WAGNER J, ARORA P, CORTES S, et al. DCU: aspect-based polarity classification for SemEval task 4 [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 223–229.
6 TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network [EB/OL]. (2016-09-24)[2022-04-01]. https://arxiv.org/pdf/1605.08900.pdf.
7 CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 452-461.
8 MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification [EB/OL]. (2017-09-04)[2022-04-01].https://arxiv.org/pdf/1709.00893.pdf.
9 ZENG B, YANG H, XU R, et al LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9 (16): 3389
doi: 10.3390/app9163389
10 SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification [EB/OL]. (2019-04-01)[2022-04-01]. https://arxiv.org/pdf/1902.09314.pdf.
11 XU Q, ZHU L, DAI T, et al Aspect-based sentiment classification with multi-attention network[J]. Neurocomputing, 2020, 388: 135- 143
doi: 10.1016/j.neucom.2020.01.024
12 SONG W, WEN Z, XIAO Z, et al Semantics perception and refinement network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2021, 214: 106755
doi: 10.1016/j.knosys.2021.106755
13 宋威, 温子健 基于特征双重蒸馏网络的方面级情感分析[J]. 中文信息学报, 2021, 35 (7): 126- 133
SONG Wei, WEN Zi-jian Feature dual distillation network for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing, 2021, 35 (7): 126- 133
14 毛腾跃, 郑志鹏, 郑禄 基于改进自注意力机制的方面级情感分析[J]. 中南民族大学学报:自然科学版, 2022, 41 (1): 94- 100
MAO Teng-yue, ZHENG Zhi-peng, ZHENG Lu Aspect-level sentiment analysis based on improved self-attention mechanism[J]. Journal of South-Central University for Nationalities: Natural Science Edition, 2022, 41 (1): 94- 100
15 SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5679-5688.
16 HUANG B, CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks [EB/OL]. (2019-09-05)[2022-04-01]. https://arxiv.org/pdf/1909.02606.pdf.
17 ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks [EB/OL]. (2019-10-13)[2022-04-01]. https://arxiv.org/pdf/1909.03477.pdf.
18 WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis [EB/OL]. (2020-04-26)[2022-04-01]. https://arxiv.org/pdf/2004.12362.pdf.
19 TANG H, JI D, LI C, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 6578-6588.
20 VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing systems, 2017, 30
21 LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Online: Association for Computational Linguistics, 2021: 6319-6329.
22 LI Y, SUN X, WANG M. Embedding extra knowledge and a dependency tree based on a graph attention network for aspect-based sentiment analysis [C]// 2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-8.
23 张合桥, 苟刚, 陈青梅 基于图神经网络的方面级情感分析[J]. 计算机应用研究, 2021, 38 (12): 3574- 3580
ZHANG He-qiao, GOU Gang, CHEN Qing-mei Aspect-based sentiment analysis based on graph neural network[J]. Application Research of Computers, 2021, 38 (12): 3574- 3580
24 韩虎, 吴渊航, 秦晓雅 面向方面级情感分析的交互图注意力网络模型[J]. 电子与信息学报, 2021, 43 (11): 3282- 3290
HAN Hu, WU Yuan-hang, QIN Xiao-ya An interactive graph attention networks model for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2021, 43 (11): 3282- 3290
25 夏鸿斌, 顾艳, 刘渊 面向特定方面情感分析的图卷积过度注意(ASGCN-AOA)模型[J]. 中文信息学报, 2022, 36 (3): 146- 153
XIA Hong-bin, GU Yan, LIU Yuan Graph convolution overattention(ASGCN-AOA) model for specific aspects of sentiment analysis[J]. Journal of Chinese Information Processing, 2022, 36 (3): 146- 153
26 PONTIKI M, GALANIS D, PAVLOPOULOS J, et al, SemEval-2014 task 4: aspect based sentiment analysis [C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin: Association for Computational Linguistics, 2014: 27–35.
27 DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification [C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014: 49–54.
28 MRINI K, DERNONCOURT F, TRAN Q, et al. Rethinking self-attention: an interpretable self-attentive encoder-decoder parser [EB/OL]. (2020-10-29)[2022-04-01]. https://arxiv.org/pdf/1911.03875.pdf.
29 PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1532-1543.
[1] 张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.
[2] 杨帆,宁博,李怀清,周新,李冠宇. 基于语义增强特征融合的多模态图像检索模型[J]. 浙江大学学报(工学版), 2023, 57(2): 252-258.
[3] 刘超,孔兵,杜国王,周丽华,陈红梅,包崇明. 高阶互信息最大化与伪标签指导的深度聚类[J]. 浙江大学学报(工学版), 2023, 57(2): 299-309.
[4] 王林涛,毛齐. 基于RGB与深度信息融合的管片抓取位置测量方法[J]. 浙江大学学报(工学版), 2023, 57(1): 47-54.
[5] 凤丽洲,杨阳,王友卫,杨贵军. 基于Transformer和知识图谱的新闻推荐新方法[J]. 浙江大学学报(工学版), 2023, 57(1): 133-143.
[6] 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.
[7] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[8] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[9] 郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061.
[10] 鞠晓臣,赵欣欣,钱胜胜. 基于自注意力机制的桥梁螺栓检测算法[J]. 浙江大学学报(工学版), 2022, 56(5): 901-908.
[11] 王友卫,童爽,凤丽洲,朱建明,李洋,陈福. 基于图卷积网络的归纳式微博谣言检测新方法[J]. 浙江大学学报(工学版), 2022, 56(5): 956-966.
[12] 张雪芹,李天任. 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2022, 56(4): 727-735.
[13] 许萌,王丹,李致远,陈远方. IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 745-753, 782.
[14] 柳长源,何先平,毕晓君. 融合注意力机制的高效率网络车型识别[J]. 浙江大学学报(工学版), 2022, 56(4): 775-782.
[15] 陈巧红,裴皓磊,孙麒. 基于视觉关系推理与上下文门控机制的图像描述[J]. 浙江大学学报(工学版), 2022, 56(3): 542-549.