Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 415-425    DOI: 10.3785/j.issn.1008-973X.2023.02.020
电子与通信工程     
无设备人体追踪系统的择优标签方法
鲁建厦(),包秦,汤洪涛,邵益平,赵文彬
浙江工业大学 机械工程学院,浙江 杭州 310023
Optimal tag selection method for device-free human tracking system
Jian-sha LU(),Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(1716 KB)   HTML
摘要:

针对现有人体追踪系统追踪误差大、硬件部署对环境改变大和用户佩戴设备不方便等问题,提出基于择优标签的无设备人体追踪方法. 采集人体在不同位置上的射频(RF)功率信号,分析人体所在位置与功率信号之间的关系. 为了减缓信号不稳定性对系统的影响,提取射频功率信号的特征作为模型训练的数据集. 利用信号特征建立不同的深度学习模型,对比不同训练方式下的追踪效果和标签用量,选择合适的模型结构和训练方式. 分析实验结果,给出普适性意见和最优标签选择方法的具体步骤.实验表明,基于择优标签方法的定位系统是可行的,其中跟踪误差为0.19 m,与表现较好的WallSense系统相比,跟踪误差降低约5 cm,标签量降低66.7%. 基于择优标签方法的定位系统明显降低了标签部署对环境的影响,在保证精度的情况下,减少了标签冗余.

关键词: 无设备追踪信号特征标签择优深度学习射频识别    
Abstract:

A device-free human tracking method based on selected tags was proposed to address the problems of existing human tracking systems, such as large tracking errors, large changes to the environment caused by hardware deployment, and inconvenience for users to wear the device. The radio frequency (RF) power signals of the human body at different positions were collected, and the relationship between the positions of the human body and the power signal was analyzed. In order to mitigate the effect of signal instability on the system, the features of the RF power signal were extracted as the dataset for model training. Different deep learning models were established by using the features of the RF power signal, and the tracking results and label usage under different training methods were compared to select the appropriate model structure and training method. The general opinion and the specific steps of the optimal tag selection method were given after analyzing the experimental results. Experimental results show that the location system based on the optimal tag selection method is feasible. The tracking error was 0.19 m, which was about 5 cm lower than that of the WallSense system, and the number of tags was reduced by 66.7%. The impact of tag deployment on the environment was obviously reduced, and the tag redundancy was reduced while the accuracy was ensured.

Key words: device-free tracking    signal feature    optimal tag selection    deep learning    radio frequency identification
收稿日期: 2021-08-09 出版日期: 2023-02-28
CLC:  TP 399  
基金资助: 浙江省重点研发计划资助项目(2018C01003)
作者简介: 鲁建厦(1963—),男,教授,博导,从事智能物流、物流装备和精益生产研究. orcid.org/0000-0002-5874-338X. E-mail: ljs@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
鲁建厦
包秦
汤洪涛
邵益平
赵文彬

引用本文:

鲁建厦,包秦,汤洪涛,邵益平,赵文彬. 无设备人体追踪系统的择优标签方法[J]. 浙江大学学报(工学版), 2023, 57(2): 415-425.

Jian-sha LU,Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO. Optimal tag selection method for device-free human tracking system. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 415-425.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/415

图 1  择优标签方法流程图
图 2  RSSI均值和方差的提取
图 3  测试人员在监控区域内的信号采集
图 4  人对功率信号特征分布的影响
图 5  循环神经网络结构
图 6  seq2seq结构示意图
图 7  额外信息与隐层拼接的添加
图 8  计算状态与权值的加权和
图 9  注意力计算过程
图 10  seq2seq加注意力结构
图 11  抛硬币确定输入方法的示意图
图 12  参数p的多种衰减过程
训练方式 A/% ttrain/min
自身推断 86.36 145.6
真实标签 86.60 145.6
线性衰减 88.53 123.6
指数衰减 87.25 181.4
恒定值 87.55 145.6
反向sigmoid衰减 86.23 163.5
表 1  不同训练方式的序列正确率
位置 标签
tag1 tag2 tag3 tag4 tag5 tag6
L1 97.34 98.29 99.33 99.90 85.16 99.76
L2 98.96 95.41 94.64 98.10 94.89 99.03
L3 99.32 98.59 95.19 99.61 93.49 98.40
L4 99.76 94.23 88.29 98.22 96.07 99.76
L5 100.00 95.58 93.57 99.93 99.71 98.72
表 2  所有标签的分类正确率(RNN作为结构单元)
位置 标签
tag1 tag2 tag3 tag4 tag5 tag6
L1 97.05 99.38 98.81 99.38 84.44 99.71
L2 99.17 95.79 92.68 97.79 94.72 99.55
L3 99.47 97.13 92.42 99.12 95.14 99.12
L4 99.73 95.53 90.54 97.40 96.41 99.69
L5 99.81 96.21 93.48 99.78 99.66 99.37
表 3  所有标签的分类正确率(GRU作为结构单元)
位置 标签
tag1 tag2 tag3 tag4 tag5 tag6
L1 97.05 99.38 98.81 99.38 84.44 99.71
L2 99.17 95.79 92.68 97.79 94.72 99.55
L3 99.47 97.13 92.42 99.12 95.14 99.12
L4 99.73 95.53 90.54 97.40 96.41 99.69
L5 99.81 96.21 93.48 99.78 99.66 99.37
表 4  所有标签的分类正确率(LSTM作为结构单元)
网络单元 As/% Ap/% No/个
GRU 99.55 99.93 4
LSTM 99.25 99.88 5
RNN 99.88 99.98 6
表 5  3种单元在4000条序列和24000个位置的测试结果
图 13  不同单元在测试集上的错误数量
图 14  筛选后的标签布局
图 15  ImpinjM4无源标签和VFR4读写器
图 16  测试环境中的3条路径
图 17  标签筛选后的最优标签布局
图 18  标签择优后的追踪阶段流程图
1 LIU W, LI F, JING C, et al Recognition and location of typical automotive parts based on the RGB-D camera[J]. Complex and Intelligent Systems, 2021, 7 (4): 1759- 1765
doi: 10.1007/s40747-020-00182-z
2 LIM S, LEE S, JUNG J, et al Detection and localization of people inside vehicle using impulse radio ultra-wideband radar sensor[J]. IEEE Sensors Journal, 2019, 20 (7): 3892- 3901
3 SHOAIB M, BOSCH S, INCEL O D, et al Fusion of smartphone motion sensors for physical activity recognition[J]. Sensors, 2014, 14 (6): 10146- 10176
doi: 10.3390/s140610146
4 LIU H, DARABI H, BANERJEE P, et al Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2007, 37 (6): 1067- 1080
doi: 10.1109/TSMCC.2007.905750
5 NI L M, LIU Y, LAU Y C, et al. LANDMARC: indoor location sensing using active RFID [C]// 1st IEEE International Conference on Pervasive Computing and Communications. Fort Worth: IEEE, 2003: 407-417.
6 YANG L , CHEN Y , LI X Y , et al. Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices [C]// 20th ACM Annual International Conference on Mobile Computing and Networking (MobiCom). Maui: ASSOC Computing Machinery, 2014: 237-248.
7 SHEN L, ZHANG Q, PANG J, et al ANTspin: efficient absolute localization method of RFID tags via spinning antenna[J]. Sensors, 2019, 19 (9): 2194- 2213
doi: 10.3390/s19092194
8 梁笑轩, 黄樟钦, 邱兰馨. 一种基于二维相控阵天线的RFID定位方法 [J]. 电子学报, 2018, 46(4): 146-152.
LIANG Xiao-xuan, HUANG Zhang-Qin, QIU Lan-xin. An RFID positioning method based on two-dimensional phased array antenna [J]. Acta Electronica Sinica, 2018, 46(4): 146-152.
9 马雪松, 赵寒涛, 朱明清 CVIRE-RFID室内定位算法[J]. 自动化技术与应用, 2017, 36 (12): 49- 53
MA Xue-song, ZHAO Han-tao, ZHU Ming-qing CVIRE-RFID indoor positioning algorithm[J]. Techniques of Automation and Applications, 2017, 36 (12): 49- 53
doi: 10.3969/j.issn.1003-7241.2017.12.012
10 顾军华, 许鹏, 董瑶, 等 基于克里金插值的自适应VIRE室内定位算法研究[J]. 计算机工程与应用, 2018, 54 (12): 100- 104
GU Jun-hua, XU Peng, DONG Yao, et al Research on adaptive VIRE indoor positioning algorithm based on Kriging interpolation[J]. Computer Engineering and Applications, 2018, 54 (12): 100- 104
doi: 10.3778/j.issn.1002-8331.1709-0242
11 SHANGGUAN L, YANG Z, LIU A X, et al STPP: spatial-temporal phase profiling-based method for relative RFID tag localization[J]. IEEE/ACM Transactions on Networking, 2016, 25 (1): 596- 609
12 RUAN W J, SHENG Q Z, YAO L, et al. Device-free indoor localization and tracking through human-object interactions [C]// 2016 IEEE 17th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). Coimbra: IEEE, 2016.
13 LIU M, WANG H, YANG Y, et al RFID 3-D indoor localization for tag and tag-free target based on interference[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68 (10): 3718- 3732
14 XIAO F, WANG Z, YE N, et al One more tag enables fine-grained RFID localization and tracking[J]. IEEE/ACM Transactions on Networking, 2017, 26 (1): 161- 174
15 HAN J, QIAN C, WANG X, et al Twins: device-free object tracking using passive tags[J]. IEEE/ACM Transactions on Networking, 2015, 24 (3): 1605- 1617
16 MA L, LIU M, WANG H, et al WallSense: device-free indoor localization using wall-mounted UHF RFID tags[J]. Sensors, 2018, 19 (1): 68- 83
doi: 10.3390/s19010068
17 丁治国. RFID关键技术研究与实现[D]. 合肥: 中国科学技术大学, 2009.
DING Zhi-guo. Research and implementation of RFID key technology [D]. Hefei: University of Science and Technology of China, 2009.
18 谢飞, 张忠臣, 张鹏, 等 多径效应对测向误差的影响[J]. 电子测量技术, 2010, 33 (1): 29- 31
XIE Fei, ZHANG Zhong-cheng, ZHANG Peng, et al The influence of multipath effect on direction finding error[J]. Electronic Measurement Technology, 2010, 33 (1): 29- 31
doi: 10.3969/j.issn.1002-7300.2010.01.009
19 徐潇潇, 谢林柏 位置指纹算法关键参数的提取[J]. 江南大学学报:自然科学版, 2015, 14 (3): 264- 268
XU Xiao-xiao, XIE Lin-bai Extraction of key parameters of location fingerprint algorithm[J]. Journal of Clothing Research, 2015, 14 (3): 264- 268
20 BERTHOUZE L, TIJSSELING A A neural model for context-dependent sequence learning[J]. Neural Processing Letters, 2006, 23 (1): 27- 45
doi: 10.1007/s11063-005-2838-x
21 GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28 (10): 2222- 2232
22 FU R, ZHANG Z, LI L, et al. Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction [C]// 31st Youth Academic Annual Conference of Chinese-Association-of-Automation (YAC). Wuhan: IEEE, 2016: 324-328.
23 KONG W C, DONG Z Y, JIA Y W, et al Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transcations on Smart Grid, 2019, 10 (1): 841- 851
doi: 10.1109/TSG.2017.2753802
[1] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[2] 马骏驰,迪骁鑫,段宗涛,唐蕾. 程序表示学习综述[J]. 浙江大学学报(工学版), 2023, 57(1): 155-169.
[3] 叶晨,战洪飞,林颖俊,余军合,王瑞,钟武昌. 基于推理-情境感知激活模型的设计知识推荐[J]. 浙江大学学报(工学版), 2023, 57(1): 32-46.
[4] 刘近贞,陈飞,熊慧. 多尺度残差网络模型的开放式电阻抗成像算法[J]. 浙江大学学报(工学版), 2022, 56(9): 1789-1795.
[5] 王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
[6] 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.
[7] 夏杰锋,唐武勤,杨强. 光伏航拍红外图像的热斑自动检测方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1640-1647.
[8] 赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.
[9] 何立,庞善民. 结合年龄监督和人脸先验的语音-人脸图像重建[J]. 浙江大学学报(工学版), 2022, 56(5): 1006-1016.
[10] 张雪芹,李天任. 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2022, 56(4): 727-735.
[11] 褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
[12] 程若然,赵晓丽,周浩军,叶翰辰. 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报(工学版), 2022, 56(3): 510-519, 530.
[13] 袁天乐,袁巨龙,朱勇建,郑翰辰. 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2349-2357.
[14] 钟帆,柏正尧. 采用动态残差图卷积的3D点云超分辨率[J]. 浙江大学学报(工学版), 2022, 56(11): 2251-2259.
[15] 彭向东,潘从成,柯泽浚,朱华强,周肖. 基于并行架构和时空注意力机制的心电分类方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1912-1923.