计算机与控制工程 |
|
|
|
|
基于深度学习三维成型的钢板表面缺陷检测 |
兰欢1(),余建波1,2,*() |
1. 同济大学 机械与能源工程学院,上海 201804 2. 上海市大型构件智能制造机器人技术协同创新中心, 上海 201620 |
|
Steel surface defect detection based on deep learning 3D reconstruction |
Huan LAN1(),Jian-bo YU1,2,*() |
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China 2. Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai 201620, China |
1 |
程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904 CHEN Xun, YU Jian-bo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
|
2 |
CHU M F, GONG R F, GAO S, et al Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 140- 150
doi: 10.1016/j.chemolab.2017.10.020
|
3 |
王典洪, 甘胜丰, 张伟民, 等 基于监督双限制连接 Isomap算法的带钢表面缺陷图像分类方法[J]. 自动化学报, 2014, 40 (5): 883- 891 WANG Dian-hong, GAN Sheng-feng, ZHANG Wei-min, et al Strip surface defect image classification based on double-limited and supervised-connect Isomap algorithm[J]. Acta Automatica Sinica, 2014, 40 (5): 883- 891
|
4 |
WANG H Y, ZHANG J W, TIAN Y, et al A Simple guidance template-based defect detection method for strip steel surfaces[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (5): 2798- 2809
doi: 10.1109/TII.2018.2887145
|
5 |
KOYUNCU I, ÇETIN O, KATIRCIOĞLU F, et al. Edge dedection application with FPGA based Sobel operator [C]// Signal Processing and Communications Applications Conference. Malatya: IEEE, 2015: 1829–1832.
|
6 |
HE Y, SONG K C, MENG Q G, et al An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (4): 1493- 1504
doi: 10.1109/TIM.2019.2915404
|
7 |
LIU Y, XU K, XU J W Periodic surface defect detection in steel plates based on deep learning[J]. Applied Sciences-Basel, 2019, 9 (15): 3127
doi: 10.3390/app9153127
|
8 |
金侠挺, 王耀南, 张辉, 等 基于贝叶斯 CNN和注意力网络的钢轨表面缺陷检测系统[J]. 自动化学报, 2019, 45 (12): 2312- 2327 JIN Xia-ting, WANG Yao-nan, ZHANG Hui DeepRail: automatic visual detection system for railway surface defect using Bayesian CNN and attention network[J]. Acta Automatica Sinica, 2019, 45 (12): 2312- 2327
|
9 |
LIU J Q, ZHANG Z J, LIN Z Y, et al Characterization method of surface crack based on laser thermography[J]. IEEE Access, 2021, 9: 76395- 76402
doi: 10.1109/ACCESS.2021.3081435
|
10 |
GUNATILAKE A, PIYATHILAKA L, TRAN A, et al Stereo vision combined with laser profiling for mapping of pipeline internal defects[J]. IEEE Sensors Journal, 2021, 21 (10): 11926- 11934
doi: 10.1109/JSEN.2020.3040396
|
11 |
孙彬, 王建华, 赫东锋, 等 基于激光测量的航发叶片表面几何缺陷识别技术[J]. 自动化学报, 2020, 46 (3): 594- 599 SUN Bin, WANG Jian-hua, HE Dong-feng, et al Identification of aero-engine blade surface geometric defects with laser measurement[J]. Acta Automatica Sinica, 2020, 46 (3): 594- 599
|
12 |
ZHAO C, ZHU H, WANG X. Steel plate surface defect recognition method based on depth information [C]// Data Driven Control and Learning Systems Conference. Dali: IEEE, 2019: 322-327.
|
13 |
EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network [C]// Conference on Neural Information Processing Systems. Montreal: [s. n.], 2014: 2366-2374.
|
14 |
YAO Y, LUO Z, LI S, et al. MVSNet: depth inference for unstructured multi-view stereo [C]// European Conference on Computer Vision. Munich: Springer, 2018: 785-801.
|
15 |
IM S, JEON H G, LIN S, et al. DPSNet: end-to-end deep plane sweep stereo [EB/OL]. [2022-03-04]. https://arxiv.org/pdf/1905.00538.pdf.
|
16 |
YU Z, GAO S. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1949-1958.
|
17 |
CHEN R, HAN S, XU J, et al. Point-based multi-view stereo network [C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 1538-1547.
|
18 |
GU X, FAN Z, ZHU S, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2492-2501.
|
19 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
20 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// Conference on Computer Vision and Pattern Recognition. Nashille: IEEE, 2021: 13708-13717.
|
21 |
HU J, SHEN L, SUN G, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
22 |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// International Conference on Knowledge Discovery and Data Mining. Portland: [s. n.], 1996: 226-231.
|
23 |
GOOTTSCHALK S, LIN M C, MANOCHA D. OBBTree: a hierarchical structure for rapid interference detection [C]// Conference on Computer Graphics and Interactive Techniques. New Orleans: ACM, 1996, 30: 171-180.
|
24 |
AANAES H, JENSEN R R, VOGIATZIS G, et al Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120 (2): 153- 168
doi: 10.1007/s11263-016-0902-9
|
25 |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited [C]// Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 4104-4113.
|
26 |
TOLA E, STRECHA C, FUA P Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications, 2012, 23: 903- 920
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|