机械工程 |
|
|
|
|
航空装配领域中命名实体识别的持续学习框架 |
刘沛丰(),钱璐,赵兴炜*(),陶波 |
华中科技大学 数字制造装备与技术国家重点实验室,湖北 武汉 430074 |
|
Continual learning framework of named entity recognition in aviation assembly domain |
Pei-feng LIU(),Lu QIAN,Xing-wei ZHAO*(),Bo TAO |
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
刘沛丰,钱璐,赵兴炜,陶波. 航空装配领域中命名实体识别的持续学习框架[J]. 浙江大学学报(工学版), 2023, 57(6): 1186-1194.
Pei-feng LIU,Lu QIAN,Xing-wei ZHAO,Bo TAO. Continual learning framework of named entity recognition in aviation assembly domain. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1186-1194.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.014
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1186
|
1 |
陈永佩, 杜震洪, 刘仁义, 等 一种引入实体的地理语义相似度混合计算模型[J]. 浙江大学学报: 理学版, 2018, 45 (2): 196- 204 CHEN Yong-pei, DU Zhen-hong, LIU Ren-yi, et al A hybrid geo-semantic similarity measurement model introducing geographic entities[J]. Journal of Zhejiang University: Science Edition, 2018, 45 (2): 196- 204
|
2 |
陈善雄, 王小龙, 韩旭, 等 一种基于深度学习的古彝文识别方法[J]. 浙江大学学报: 理学版, 2019, 46 (3): 261- 269 CHEN Shan-xiong, WANG Xiao-long, HAN Xu, et al A recognition method of Ancient Yi character based on deep learning[J]. Journal of Zhejiang University: Science Edition, 2019, 46 (3): 261- 269
|
3 |
张栋豪, 刘振宇, 郏维强, 等 知识图谱在智能制造领域的研究现状及其应用前景综述[J]. 机械工程学报, 2021, 57 (5): 90- 113 ZHANG Dong-hao, LIU Zhen-yu, JIA Wei-qiang, et al A review on knowledge graph and its application prospects to intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57 (5): 90- 113
doi: 10.3901/JME.2021.05.090
|
4 |
邱凌, 张安思, 李少波, 等 航空制造知识图谱构建研究综述[J]. 计算机应用研究, 2022, 39 (4): 968- 977 QIU Ling, ZHANG An-si, LI Shao-bo, et al Survey on building knowledge graphs for aerospace manufacturing[J]. Application Research of Computers, 2022, 39 (4): 968- 977
doi: 10.19734/j.issn.1001-3695.2021.09.0367
|
5 |
徐增林, 盛泳潘, 贺丽荣, 等 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45 (4): 589- 606 XU Zeng-lin, SHENG Yong-pan, HE Li-rong, et al Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45 (4): 589- 606
|
6 |
杨贺羽. 基于深度学习的半监督式命名实体识别[D]. 沈阳: 沈阳工业大学, 2019. YANG He-yu. Semi-supervised named entity recognition based on deep learning [D]. Shenyang: Shenyang University of Technology, 2019.
|
7 |
LI J, SUN A, HAN J, et al A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34: 50- 70
doi: 10.1109/TKDE.2020.2981314
|
8 |
RING M B. Child: a first stop towards continual learning [M]// THRUN S, PRATT L. Learning to learn. New York: Springer, 1998 : 261-292
|
9 |
LEVOW G. The third international Chinese language processing bakeoff: word segmentation and named entity recognition [C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Sydney: Association for Computational Linguistics, 2006: 108-117.
|
10 |
OCKER F, PAREDIS C J J, VOGEL-HEUSER B Applying knowledge bases to make factories smarter[J]. Automatisierungstechnik, 2019, 67 (6): 504- 517
doi: 10.1515/auto-2018-0138
|
11 |
肖勇, 郑楷洪, 王鑫, 等 基于联合神经网络学习的中文电力计量命名实体识别[J]. 浙江大学学报: 理学版, 2021, 48 (3): 321- 330 XIAO Yong, ZENG Kai-hong, WANG Xin, et al Chinese named entity recognition in electric power metering domain based on neural joint learning[J]. Journal of Zhejiang University: Science Edition, 2021, 48 (3): 321- 330
|
12 |
CAMASTRA F, VINCIARELLI A. Markovian models for sequential data [M]// CAMASTRA F, VINCIARELLI A. Machine learning for audio, image and video analysis. London: Springer, 2008: 265-303.
|
13 |
SUTTON C, MCCALLUM A. An introduction to conditional random fields [EB/OL]. (2010-11-17). https://arxiv.org/pdf/1011.4088.pdf.
|
14 |
HAMMERTON J. Named entity recognition with long short-term memory [C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: Association for Computational Linguistics, 2003: 172-175.
|
15 |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language. San Diego: Association for Computational Linguistics, 2016: 260–270.
|
16 |
CHEN A, PENG F, SHAN R, et al. Chinese named entity recognition with conditional probabilistic models [C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Sydney: Association for Computational Linguistics, 2006: 173-176.
|
17 |
ZHOU J, QU W, FEN Z Chinese named entity recognition via joint identification and categorization[J]. Chinese Journal of Electronics, 2013, 22 (2): 225- 230
|
18 |
ZHANG Y, WANG Y, YANG J Lattice LSTM for Chinese sentence representation[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2020, 28: 1506- 1519
doi: 10.1109/TASLP.2020.2991544
|
19 |
杨飘, 董文永 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46 (4): 40- 45 YANG Piao, DONG Wen-yong Chinese named entity recognition method based on BERT embedding[J]. Computer Engineering, 2020, 46 (4): 40- 45
doi: 10.19678/j.issn.1000-3428.0054272
|
20 |
《航空制造工程手册》总编委会. 航空制造工程手册: 飞机装配[M]. 北京: 航空工业出版社, 2010: 589–625.
|
21 |
NAKAYAMA H, KUBO T, KAMURA J, et al. Doccano: text annotation tool for human [CP/DK]. (2022-05-19). https://github.com/doccano/doccano.
|
22 |
PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015: 548–554.
|
23 |
彭春艳, 张晖, 包玲玉, 等 基于条件随机域的生物命名实体识别[J]. 计算机工程, 2009, 35 (22): 197- 199 PENG Chun-yan, ZHANG Hui, BAO Ling-yu, et al Biological named entity recognition based on conditional random fields[J]. Computer Engineering, 2009, 35 (22): 197- 199
doi: 10.3969/j.issn.1000-3428.2009.22.067
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|