计算机与控制工程 |
|
|
|
|
基于分割注意力与线性变换的轻量化目标检测 |
张艳1,2( ),孙晶雪1,孙叶美1,2,*( ),刘树东1,2,王传启3 |
1. 天津城建大学 计算机与信息工程学院,天津 300384 2. 天津市智慧养老与健康服务工程研究中心,天津 300384 3. 天津凯发电气股份有限公司,天津 300392 |
|
Lightweight object detection based on split attention and linear transformation |
Yan ZHANG1,2( ),Jing-xue SUN1,Ye-mei SUN1,2,*( ),Shu-dong LIU1,2,Chuan-qi WANG3 |
1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China 2. Tianjin Intelligent Elderly Care and Health Service Engineering Research Center, Tianjin 300384, China 3. Tianjin Keyvia Electric Limited Company, Tianjin 300392, China |
引用本文:
张艳,孙晶雪,孙叶美,刘树东,王传启. 基于分割注意力与线性变换的轻量化目标检测[J]. 浙江大学学报(工学版), 2023, 57(6): 1195-1204.
Yan ZHANG,Jing-xue SUN,Ye-mei SUN,Shu-dong LIU,Chuan-qi WANG. Lightweight object detection based on split attention and linear transformation. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1195-1204.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.015
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1195
|
1 |
张德祥, 王俊, 袁培成 基于注意力机制的多尺度全场景监控目标检测方法[J]. 电子与信息学报, 2022, 44 (9): 3249- 3257 ZHANG De-xiang, WANG Jun, YUAN Pei-cheng Object detection method for multi-scale full-scene surveillance based on attention mechanism[J]. Journal of Electronics and Information Technology, 2022, 44 (9): 3249- 3257
|
2 |
袁益琴, 何国金, 王桂周, 等 背景差分与帧间差分相融合的遥感卫星视频运动车辆检测方法[J]. 中国科学院大学学报, 2018, 35 (1): 50- 58 YUAN Yi-qin, HE Guo-jin, WANG Gui-zhou, et al A background subtraction and frame subtraction combined method for moving vehicle detection in satellite video data[J]. Journal of University of Chinese Academy of Sciences, 2018, 35 (1): 50- 58
|
3 |
ZHU J, ZOU H, ROSSET S, et al Multi-class AdaBoost[J]. Statistics and its Interface, 2009, 2: 349- 360
doi: 10.4310/SII.2009.v2.n3.a8
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
5 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vegas: IEEE, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
|
8 |
王立辉, 杨贤昭, 刘惠康, 等 基于GhostNet与注意力机制的行人检测跟踪算法[J]. 数据采集与处理, 2022, 37 (1): 108- 121 WANG Li-hui, YANG Xian-zhao, LIU Hui-kang, et al Pedestrian detection and tracking algorithm based on GhostNet and attention mechanism[J]. Journal of Data Acquisition and Processing, 2022, 37 (1): 108- 121
doi: 10.16337/j.1004-9037.2022.01.009
|
9 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2018: 3-19.
|
10 |
ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[C]// Proceedings of the Asian Conference on Computer Vision, 2022: 1161-1177.
|
11 |
TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [C]// Proceedings of the 36th International Conference on Machine Learning. [S.l.]: PMLR, 2019: 6105-6114.
|
12 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
13 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
14 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1580-1589.
|
15 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [EB/OL]. (2017-01-23). https://arxiv.org/pdf/1701.06659.pdf.
|
16 |
ZHANG Z, QIAO S, XIE C, et al. Single-shot object detection with enriched semantics [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5813–5821
|
17 |
ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4203-4212.
|
18 |
DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. [S.l.]: CAI, 2016: 379-387.
|
19 |
HAO S, WANG Z, SUN F Stacked pyramid attention network for object detection[J]. Neural Processing Letters, 2022, 54: 2759- 2782
doi: 10.1007/s11063-021-10505-x
|
20 |
DUAN Q, PING K, LI F, et al. Method of safety helmet wearing detection based on key-point estimation without anchor [C]// 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing. Chengdu: IEEE, 2020: 93-96
|
21 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017: 1137-1149.
|
22 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08). https://arxiv.org/pdf/1804.02767.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|