|
|
基于改进GhostNet-FCOS的火灾检测算法 |
张融(),张为*() |
天津大学 微电子学院,天津 300072 |
|
Fire detection algorithm based on improved GhostNet-FCOS |
Rong ZHANG(),Wei ZHANG*() |
School of Microelectronics, Tianjin University, Tianjin 300072, China |
1 |
FOGGIA P, SAGGESE A, VENTO M Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25 (9): 1545- 1556
doi: 10.1109/TCSVT.2015.2392531
|
2 |
严云洋, 杜静, 高尚兵, 等 融合多特征的视频火焰检测[J]. 计算机辅助设计与图形学学报, 2015, 27 (3): 433- 440 YAN Yun-yang, DU Jing, GAO Shang-bing, et al Video flame detection based on fusion of multi-feature[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (3): 433- 440
|
3 |
HASHEMZADEH M, ZADEMEHDI A Fire detection for video surveillance applications using ICA k-medoids-based color model and efficient spatio-temporal visual features[J]. Expert Systems with Applications, 2019, 130: 60- 78
doi: 10.1016/j.eswa.2019.04.019
|
4 |
MUHAMMAD K, AHMAD J, BAIK S W Early fire detection using convolutional neural networks during surveillance for effective disaster management[J]. Neurocomputing, 2018, 288: 30- 42
doi: 10.1016/j.neucom.2017.04.083
|
5 |
MUHAMMAD K, AHMAD J, MEHMOOD I, et al Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174- 18183
doi: 10.1109/ACCESS.2018.2812835
|
6 |
MUHAMMAD K, AHMAD J, LV Z, et al Efficient deep CNN-based fire detection and localization in video surveillance applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49 (7): 1419- 1434
|
7 |
MUHAMMAD K, KHAN S, ELHOSENY M, et al Efficient fire detection for uncertain surveillance environment[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (5): 3113- 3122
doi: 10.1109/TII.2019.2897594
|
8 |
LI S, YAN Q, LIU P An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism[J]. IEEE Transactions on Image Processing, 2020, 29: 8467- 8475
doi: 10.1109/TIP.2020.3016431
|
9 |
JEON M, CHOI H S, LEE J, et al Multi-scale prediction for fire detection using convolutional neural network[J]. Fire Technology, 2021, 57 (5): 1- 19
|
10 |
CHAOXIA C Y, SHANG W W, ZHANG F Information-guided flame detection based on faster R-CNN[J]. IEEE Access, 2020, 8: 58923- 58932
doi: 10.1109/ACCESS.2020.2982994
|
11 |
晋耀, 张为 采用Anchor-Free网络结构的实时火灾检测算法[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2430- 2436 JIN Yao, ZHANG Wei Real-time fire detection algorithm with anchor-free network architecture[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2430- 2436
|
12 |
李欣健, 张大胜, 孙利雷, 等 复杂场景下基于CNN的轻量火焰检测方法[J]. 模式识别与人工智能, 2021, 34 (5): 415- 422 LI Xin-jian, ZHANG Da-sheng, SUN Li-lei, et al CNN-based lightweight fire detection method in complex scenes[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (5): 415- 422
doi: 10.16451/j.cnki.issn1003-6059.202105004
|
13 |
KIM B, LEE J A video-based fire detection using deep learning models[J]. Applied Sciences, 2019, 9 (14): 2862
doi: 10.3390/app9142862
|
14 |
TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9627–9636.
|
15 |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1580-1589.
|
16 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117–2125.
|
17 |
YANG B, BENDER G, LE Q V, et al CondConv: conditionally parameterized convolutions for efficient inference[J]. Advances in Neural Information Processing Systems, 2019, 32: 1307- 1318
|
18 |
HU J, SHEN L, ALBANIE S, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision. Munich: Springer, 2018: 1-19.
|
20 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666.
|
21 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// European Conference on Computer Vision. Zurich: Springer, 2014: 740-755.
|
22 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 116-131.
|
23 |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
24 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for mobilenetv3 [C]// International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324.
|
25 |
KO B C, CHEONG K H, NAM J Y Fire detection based on vision sensor and support vector machines[J]. Fire Safety Journal, 2009, 44 (3): 322- 329
doi: 10.1016/j.firesaf.2008.07.006
|
26 |
BORGES P V K, IZQUIERDO E A probabilistic approach for vision-based fire detection in videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20 (5): 721- 731
doi: 10.1109/TCSVT.2010.2045813
|
27 |
TRUONG T X, KIM J M Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (7): 1365- 1372
doi: 10.1016/j.engappai.2012.05.007
|
28 |
KONG S G, JIN D, LI S Fast fire flame detection in surveillance video using logistic regression and temporal smoothing[J]. Fire Safety Journal, 2016, 79: 37- 43
doi: 10.1016/j.firesaf.2015.11.015
|
29 |
吴茜茵, 严云洋, 杜静, 等 多特征融合的火焰检测算法[J]. 智能系统学报, 2015, 10 (2): 240- 247 WU Xi-yin, YAN Yun-yang, DU Jing, et al Fire detection based on fusion of multiple features[J]. CAAI Transactions on Intelligent Systems, 2015, 10 (2): 240- 247
doi: 10.3969/j.issn.1673-4785.201406022
|
30 |
梅建军, 张为 基于ViBe与机器学习的早期火灾监测算法[J]. 光学学报, 2018, 38 (7): 60- 67 MEI Jian-jun, ZHANG Wei Early fire detection algorithm based on ViBe and machine learning[J]. Acta Optica Sinica, 2018, 38 (7): 60- 67
|
31 |
KANG L W, WANG I S, CHOU K L, et al. Image-based real-time fire detection using deep learning with data augmentation for vision-based surveillance applications [C]// 16th IEEE International Conference on Advanced Video and Signal Based Surveillance. Taipei: IEEE, 2019: 1-4.
|
32 |
DAI Z. Image flame detection method based on improved yolov3 [C]// IOP Conference Series: Earth and Environmental Science. Xi’an: IOP Publishing, 2021, 693(1): 012012.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|