计算机技术 |
|
|
|
|
特征金字塔多尺度全卷积目标检测算法 |
林志洁1,2( ),罗壮2,赵磊2,*( ),鲁东明2 |
1. 浙江科技学院 信息与电子工程学院,浙江 杭州 310023 2. 浙江大学 计算机学院,浙江 杭州 310027 |
|
Multi-scale convolution target detection algorithm with feature pyramid |
Zhi-jie LIN1,2( ),Zhuang LUO2,Lei ZHAO2,*( ),Dong-ming LU2 |
1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 2. School of computer science, Zhejiang University, Hangzhou 310027, China |
引用本文:
林志洁,罗壮,赵磊,鲁东明. 特征金字塔多尺度全卷积目标检测算法[J]. 浙江大学学报(工学版), 2019, 53(3): 533-540.
Zhi-jie LIN,Zhuang LUO,Lei ZHAO,Dong-ming LU. Multi-scale convolution target detection algorithm with feature pyramid. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 533-540.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.014
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/533
|
1 |
SERMANET P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition, localization and detection using convolutional networks [EB/OL]. preprint arXiv: 1312.6229.
|
2 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (6): 1137- 1149
|
3 |
PAPAGEORGIOU C P. A general framework for object detection [C] // Computer Vision and Pattern Recognition. Santa Barbara: IEEE, 1998: 511–562.
|
4 |
PAPAGEORGIOU C, POGGIO T A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 38 (1): 15- 33
doi: 10.1023/A:1008162616689
|
5 |
VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C] // 2001 Proceedings of Computer Vision and Pattern Recognition. Kauai: IEEE, 2001: I-I.
|
6 |
LOWE D G Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
doi: 10.1023/B:VISI.0000029664.99615.94
|
7 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886–893.
|
8 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C] // International Conference on Neural Information Processing Systems. Lake Tahoe: Springer, 2012: 1097–1105.
|
9 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Puerto: IEEE, 2014: 580–587.
|
10 |
FELZENSZWALB P F, MCALLESTER D A, RAMANAN D. A discriminatively trained, multiscale, deformable part model [C] // Computer Vision and Pattern Recognition. Hausdorff: IEEE, 2008: 1–8.
|
11 |
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A, et al Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1627- 1645
doi: 10.1109/TPAMI.2009.167
|
12 |
GIRSHICK R B. Fast R-CNN [C] // International Conference on Computer Vision, Santiago: IEEE, 2015: 1440–1448.
|
13 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
|
14 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 936–944.
|
15 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [C] // IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
17 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. preprint arXiv: 1409.1556v6.
|
18 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
|
19 |
RUSSAKOVSKY O, DENG J, SU H, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
doi: 10.1007/s11263-015-0816-y
|
20 |
GHIASI G, FOWLKES C C. Laplacian pyramid reconstruction and refinement for semantic segmentation [C] // European Conference on Computer Vision. Amsterdam: Springer, 2016: 519–534.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|