计算机技术 |
|
|
|
|
基于重要性抽样的图卷积社团发现方法 |
蔡晓东( ),王萌,梁晓曦,陈昀 |
桂林电子科技大学 信息与通信学院,广西 桂林 541004 |
|
Community detection method based on graph convolutional network via importance sampling |
Xiao-dong CAI( ),Meng WANG,Xiao-xi LIANG,Yun CHEN |
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China |
引用本文:
蔡晓东,王萌,梁晓曦,陈昀. 基于重要性抽样的图卷积社团发现方法[J]. 浙江大学学报(工学版), 2019, 53(3): 541-547.
Xiao-dong CAI,Meng WANG,Xiao-xi LIANG,Yun CHEN. Community detection method based on graph convolutional network via importance sampling. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 541-547.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.015
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/541
|
1 |
SUN Y, WANG X, TANG X. Deeply learned face representations are sparse, selective, and robust [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 2892–2900.
|
2 |
XUE S, YAN Z. Improving latency-controlled BLSTM acoustic models for online speech recognition [C] // Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. New Orleans: IEEE, 2017: 5340–5344.
|
3 |
奚雪峰, 周国栋 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42 (10): 1445- 1465 XI Xue-Feng, ZHOU Guo-Dong A survey on deep learning for natural language processing[J]. Acta Automatica Sinica, 2016, 42 (10): 1445- 1465
|
4 |
FEDERICO M, DAVIDE B, JONATHAN M, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5425–5434.
|
5 |
MICHAEL M. B, JOAN B, YANN L, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34 (4): 18- 42
doi: 10.1109/MSP.2017.2693418
|
6 |
彭静, 廖乐健, 翟英, 等 谱聚类在社团发现中的应用[J]. 北京理工大学学报, 2016, 36 (7): 701- 705 PENG Jing, LIAO Le-jian, ZHAI Ying, et al Spectral clustering for community detection[J]. Transactions of Beijing Institute of Technology, 2016, 36 (7): 701- 705
|
7 |
SHIGA M, TAKIGAWA I, MAMITSUKA H A spectral approach to clustering numerical vectors as nodes in a networks[J]. Pattern Recognition, 2011, 44 (2): 236- 251
doi: 10.1016/j.patcog.2010.08.010
|
8 |
RAGHAVAN U N, ALBERT R, KUMARA S Near linear-time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76 (3): 036106
doi: 10.1103/PhysRevE.76.036106
|
9 |
WANG M, CAI X, ZENG Y, et al. A Community detection algorithm based on jaccard similarity label propagation [C] // Intelligent Data Engineering and Automated Learning. Guilin: IDEAL, 2017: 45–52.
|
10 |
刘大有, 金弟, 何东晓, 等 复杂网络社区挖掘综述[J]. 计算机研究与发展, 2013, 50 (10): 2140- 2154 LIU Da-you, JIN Di, HE Dong-xiao, et al Community ming in complex networks[J]. Journal of Computer Research and Development, 2013, 50 (10): 2140- 2154
doi: 10.7544/issn1000-1239.2013.20120357
|
11 |
DUCH J, ARENAS A Community detection in complex networks using extremal optimization[J]. Physical Review E, 2005, 72 (2): 027104
doi: 10.1103/PhysRevE.72.027104
|
12 |
JOAN B, LI X. Community Detection with graph neural networks. [27 May 2017]. arXiv: 1705.08415v2 [stat.ML].
|
13 |
DUVENAUD D K, MACLAURIN D, IPARRAGUIRRE J , et al. Convolutional networks on graphs for learning molecular fingerprints [C] // Advances in Neural Information Processing Systems. Montreal: NIPS, 2015: 2224–2232.
|
14 |
YANG Z, WILLIAM C, RUSLAN S. Revisiting semi-supervised learning with graph embeddings [C] // Proceedings of the 33nd International Conference on Machine Learning. New York: ICML, 2016: 40–48.
|
15 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C] // 5th International Conference on Learning Representations. Toulon: ICLR, 2016. arXiv: 1609.02907.
|
16 |
LI R, WANG S, ZHU F, et al. Adaptive graph convolutional neural networks [C] // The Thirty-Second AAAI Conference on Artificial Intelligence. Louisiana: AAAI, 2018. arXiv: 1801.03226.
|
17 |
DHILLON I S, GUAN Y, KULIS B Weighted graph cuts without eigenvectors a multilevel approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (11): 1944- 57
doi: 10.1109/TPAMI.2007.1115
|
18 |
Mark Newman network data [DS]. [2017-12-05]. http://www-personal.umich.edu//~mejn/netdata.
|
19 |
HAMILTON W L, YING R, LESKOVEC J. Inductive Representation Learning on Large Graphs [C] // The Thirty-first Annual Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 1025–1035.
|
20 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [C] // In International Conference on Learning Representations. San Diego: ICLR, 2015.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|