计算机技术与控制工程 |
|
|
|
|
基于非均匀邻居节点采样的聚合式图嵌入方法 |
陈思( ),蔡晓东*( ),侯珍珍,李波 |
桂林电子科技大学 信息与通信学院,广西 桂林 541004 |
|
Aggregate graph embedding method based on non-uniform neighbor nodes sampling |
Si CHEN( ),Xiao-dong CAI*( ),Zhen-zhen HOU,Bo LI |
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China |
引用本文:
陈思,蔡晓东,侯珍珍,李波. 基于非均匀邻居节点采样的聚合式图嵌入方法[J]. 浙江大学学报(工学版), 2019, 53(11): 2163-2167.
Si CHEN,Xiao-dong CAI,Zhen-zhen HOU,Bo LI. Aggregate graph embedding method based on non-uniform neighbor nodes sampling. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2163-2167.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.014
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2163
|
1 |
HAMILTON W L, YING R, LESKOVEC J Representation learning on graphs: methods and applications[J]. IEEE Data Engineering Bulletin, 2017, 40 (3): 52- 74
|
2 |
GOYAL P, FERRARA E Graph embedding techniques, applications, and performance: a survey[J]. Knowledge Based Systems, 2017, 151: 78- 94
|
3 |
BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C] // Advances in Neural Information Processing Systems 14. Vancouver: NIPS, 2001: 585-591.
|
4 |
ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
doi: 10.1126/science.290.5500.2323
|
5 |
CAO S, LU W, XU Q. GraRep: learning graph representations with global structural information [C]// ACM International Conference on Information and Knowledge Management. Melbourne: ACM, 2015: 891-900.
|
6 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
|
7 |
GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks [C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864.
|
8 |
KIPFT N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. San Juan: ICLR, 2016.
|
9 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Advances in Neural Information Processing Systems 29. Barcelona: NIPS, 2016: 3837-3845.
|
10 |
WANG D, CUI P, ZHU W. Structural deep network embedding [C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1225-1234.
|
11 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Advances in Neural Information Processing Systems 30. Long Beach: NIPS, 2017.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|