自动化技术、计算机技术 |
|
|
|
|
基于改进YOLOv3的印刷电路板缺陷检测算法 |
卞佰成( ),陈田*( ),吴入军,刘军 |
上海电机学院 机械学院,上海 201306 |
|
Improved YOLOv3-based defect detection algorithm for printed circuit board |
Bai-cheng BIAN( ),Tian CHEN*( ),Ru-jun WU,Jun LIU |
School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China |
引用本文:
卞佰成,陈田,吴入军,刘军. 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(4): 735-743.
Bai-cheng BIAN,Tian CHEN,Ru-jun WU,Jun LIU. Improved YOLOv3-based defect detection algorithm for printed circuit board. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 735-743.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.011
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I4/735
|
1 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
2 |
ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: a survey [EB/OL]. [2022-06-28]. https://arxiv.org/abs/1905.05055.
|
3 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
4 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
5 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 779-788.
|
6 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
7 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2022-06-28]. https://arxiv.org/abs/1804.02767.
|
8 |
LU Z, HE Q, XIANG X, et al Defect detection of PCB based on bayes feature fusion[J]. The Journal of Engineering, 2018, 2018 (16): 1741- 1745
doi: 10.1049/joe.2018.8270
|
9 |
ZHANG C, SHI W, LI X, et al An improved bare PCB defect detection approach based on deep feature learning[J]. The Journal of Engineering, 2018, 2018 (16): 1415- 1420
doi: 10.1049/joe.2018.8275
|
10 |
SHI W, LU Z, WU W, et al Single-shot detector with enriched semantics for PCB tiny defect detection[J]. The Journal of Engineering, 2020, 2020 (13): 366- 372
doi: 10.1049/joe.2019.1180
|
11 |
HU B, WANG J Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network[J]. IEEE Access, 2020, 8: 108335- 108345
doi: 10.1109/ACCESS.2020.3001349
|
12 |
DING R, DAI L, LI G, et al TDD-Net: a tiny defect detection network for printed circuit boards[J]. 智能技术学报, 2019, 4 (2): 110- 116 DING R, DAI L, LI G, et al TDD-Net: a tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology, 2019, 4 (2): 110- 116
doi: 10.1049/trit.2019.0019
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 770-778.
|
14 |
HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks [C]// Proceedings of 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
|
15 |
TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [C]// Proceedings of 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 97.
|
16 |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10425-10433.
|
17 |
ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split-attention networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2736-2746.
|
18 |
JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks [C]// Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
19 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
20 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586.
|
21 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
22 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
23 |
GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection [C]// Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7029-7038.
|
24 |
LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection [EB/OL]. [2022-06-28]. https://arxiv.org/abs/1911.09516.
|
25 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10781-10790.
|
26 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2022-06-28]. https://arxiv.org/abs/2004.10934?.
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of 15th European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
28 |
WANG Q, WU B, ZHU P, et al. Supplementary material for ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13-19.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|