计算机技术 |
|
|
|
|
联合多尺度与注意力机制的遥感图像目标检测 |
张云佐1,2(),郭威1,蔡昭权3,李文博1 |
1. 石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043 2. 河北省电磁环境效应与信息处理重点实验室,河北 石家庄 050043 3. 汕尾职业技术学院,广东 汕尾 516600 |
|
Remote sensing image target detection combining multi-scale and attention mechanism |
Yun-zuo ZHANG1,2(),Wei GUO1,Zhao-quan CAI3,Wen-bo LI1 |
1. School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 2. Hebei Key Laboratory of Electromagnetic Environmental Effects and Information Processing, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 3. Shanwei Institute of Technology, Shanwei 516600, China |
引用本文:
张云佐,郭威,蔡昭权,李文博. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.012
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2215
|
1 |
姜鑫, 陈武雄, 聂海涛, 等 航空遥感图像的实时舰船目标检[J]. 光学精密工程, 2020, 28 (10): 2360- 2369 JIANG Xin, CHEN Wu-xiong, NIE Hai-tao, et al Real-time ships target detection based on aerial remote sensing images[J]. Optics and Precision Engineering, 2020, 28 (10): 2360- 2369
doi: 10.37188/OPE.20202810.2360
|
2 |
聂光涛, 黄华 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47 (8): 1749- 1768 NIE Guang-tao, HUANG Hua A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47 (8): 1749- 1768
doi: 10.16383/j.aas.c200596
|
3 |
王昶, 张永生, 王旭, 等 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报:工学版, 2020, 54 (11): 2138- 2148 WANG Chang, ZHANG Yong-sheng, WANG Xu, et al Remote sensing image change detection method based on deep neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2138- 2148
|
4 |
YANG X, SUN H, SUN X, et al Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839- 50849
doi: 10.1109/ACCESS.2018.2869884
|
5 |
FENG J, LIANG Y P, YE Z W, et al. Small object detection in optical remote sensing video with motion guided R-CNN [C]// IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 272-275.
|
6 |
GUAN H Y, YU Y T, LI D L, et al Road Caps FPN: capsule feature pyramid network for road extraction from VHR optical remote sensing imagery[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 1- 11
|
7 |
COURTRAI L, PHAM M T, LEFEVRE S Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks[J]. Remote Sensing, 2020, 12 (19): 3152
doi: 10.3390/rs12193152
|
8 |
ZHANG X D, ZHU K, CHEN G Z, et al Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network[J]. Remote Sensing, 2019, 11 (7): 755
doi: 10.3390/rs11070755
|
9 |
LI L L, CHENG L, GUO X H, et al. Deep adaptive proposal network in optical remote sensing images objective detection [C]// IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 2651-2654.
|
10 |
CHEN C Y, GONG W G, CHEN Y L, et al Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11 (3): 339
doi: 10.3390/rs11030339
|
11 |
HE W P, HUANG Z, WEI Z F, et al TF-YOLO: an improved incremental network for real-time object detection[J]. Applied Sciences, 2019, 9 (16): 3225
doi: 10.3390/app9163225
|
12 |
SHAMSOLMOALI P, CHANUSSOT J, ZAREAPOOR M, et al Multi-patch feature pyramid network for weakly supervised object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 13
|
13 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848
doi: 10.1109/TPAMI.2017.2699184
|
14 |
BERTASIUS G, TORRESANI L, YU S X, et al. Convolutional random walk networks for semantic image segmentation [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 858-866.
|
15 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2022-01-14]. https://arxiv.53yu. com/abs/1706.05587v3.
|
16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation network [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: Computer Vision Foundation, 2018: 7132-7141.
|
17 |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module [C]// European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
|
18 |
周勇, 陈思霖, 赵佳琦, 等 基于弱语义注意力的遥感图像可解释目标检测[J]. 电子学报, 2021, 49 (4): 679- 689 ZHOU Yong, CHEN Si-lin, ZHAO Jia-qi, et al Weakly semantic based attention network for interpretable object detection in remote sensing imagery[J]. Acta Electronica Sinica, 2021, 49 (4): 679- 689
doi: 10.12263/DZXB.20200554
|
19 |
ZHANG Y N, KONG J, QI M, et al Object detection based on multiple information fusion net[J]. Applied Sciences, 2020, 10 (1): 418
doi: 10.3390/app10010418
|
20 |
TAN M X, PANG R M, LE Q V. Efficientdet: scalable and efficient object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Seattle: Computer Vision Foundation, 2020: 10778-10787.
|
21 |
LI K, WAN G, CHENG G, et al Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296- 307
doi: 10.1016/j.isprsjprs.2019.11.023
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
23 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: Computer Vision Foundation, 2018: 8759-8768.
|
24 |
ZHANG J, XIE C M, XU X, et al A contextual bidirectional enhancement method for remote sensing image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4518- 4531
doi: 10.1109/JSTARS.2020.3015049
|
25 |
WANG C, BAI X, WANG S A, et al Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16 (2): 310- 314
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|