自动化技术、信息工程 |
|
|
|
|
基于多重多尺度融合注意力网络的建筑物提取 |
杨栋杰1(),高贤君1,*(),冉树浩1,张广斌1,王萍2,3,杨元维1,4,5 |
1. 长江大学 地球科学学院,湖北 武汉 430100 2. 中国科学院 空天信息创新研究院,北京 100094 3. 海南省地球观测重点实验室,海南 三亚 572029 4. 湖南科技大学 测绘遥感信息工程湖南省重点实验室,湖南 湘潭 411201 5. 北京市测绘设计研究院 城市空间信息工程北京市重点实验室,北京 100045 |
|
Building extraction based on multiple multiscale-feature fusion attention network |
Dong-jie YANG1(),Xian-jun GAO1,*(),Shu-hao RAN1,Guang-bin ZHANG1,Ping WANG2,3,Yuan-wei YANG1,4,5 |
1. School of Geosciences, Yangtze University, Wuhan 430100, China 2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 3. Key Laboratory of Earth Observation of Hainan Province, Sanya 572029, China 4. Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology, Xiangtan 411201, China 5. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing Institute of Surveying and Mapping, Beijing 100045, China |
引用本文:
杨栋杰,高贤君,冉树浩,张广斌,王萍,杨元维. 基于多重多尺度融合注意力网络的建筑物提取[J]. 浙江大学学报(工学版), 2022, 56(10): 1924-1934.
Dong-jie YANG,Xian-jun GAO,Shu-hao RAN,Guang-bin ZHANG,Ping WANG,Yuan-wei YANG. Building extraction based on multiple multiscale-feature fusion attention network. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1924-1934.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.004
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I10/1924
|
1 |
范荣双, 陈洋, 徐启恒, 等 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48 (1): 34- 41 FAN Rong-shuang, CHEN Yang, XU Qi-heng, et al A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (1): 34- 41
doi: 10.11947/j.AGCS.2019.20170638
|
2 |
BLASCHKE T Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65 (1): 2- 16
doi: 10.1016/j.isprsjprs.2009.06.004
|
3 |
冉树浩, 胡玉龙, 杨元维, 等 基于样本形态变换的高分遥感影像建筑物提取[J]. 浙江大学学报: 工学版, 2020, 54 (5): 996- 1006 RAN Shu-hao, HU Yu-long, YANG Yuan-wei, et al Building extraction from high resolution remote sensing image based on sample morphological transformation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 996- 1006
|
4 |
JUNG C R, SCHRAMM R. Rectangle detection based on a windowed Hough transform [C]// Proceedings of 17th Brazilian Symposium on Computer Graphics and Image Processing. Curitiba: IEEE, 2004: 113-120.
|
5 |
季顺平, 魏世清 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48 (4): 448- 459 JI Shun-ping, WEI Shi-qing Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (4): 448- 459
doi: 10.11947/j.AGCS.2019.20180206
|
6 |
BOULILA W, SELLAMI M, DRISS M, et al RS-DCNN: a novel distributed convolutional-neural-networks based-approach for big remote-sensing image classification[J]. Computers and Electronics in Agriculture, 2021, 182: 106014
doi: 10.1016/j.compag.2021.106014
|
7 |
HAN W, FENG R, WANG L, et al A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 23- 43
doi: 10.1016/j.isprsjprs.2017.11.004
|
8 |
AILONG M, YUTING W, YANFEI Z, et al SceneNet: remote sensing scene classification deep learning network using multi-objective neural evolution architecture search[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 171- 188
doi: 10.1016/j.isprsjprs.2020.11.025
|
9 |
SAITO S, YAMASHITA T, AOKI Y Multiple object extraction from aerial imagery with convolutional neural networks[J]. Electronic Imaging, 2016, 2016 (10): 1- 9
|
10 |
BALL J E, ANDERSON D T, CHAN C S Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11 (4): 042609
|
11 |
MNIH V. Machine learning for aerial image labeling [D]. Canada: University of Toronto, 2013.
|
12 |
SHELHAMER E, LONG J, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (4): 640- 651
|
13 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
14 |
YI Y, ZHANG Z, ZHANG W, et al Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network[J]. Remote Sensing, 2019, 11 (15): 1774
doi: 10.3390/rs11151774
|
15 |
SHAO Z, TANG P, WANG Z, et al BRRNet: a fully convolutional neural network for automatic building extraction from high-resolution remote sensing images[J]. Remote Sensing, 2020, 12 (6): 1050
doi: 10.3390/rs12061050
|
16 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
17 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-12-05)[2022-01-05]. https://arxiv.53yu.com/abs/1706.05587.
|
18 |
RAN S H, GAO X J, YANG Y W, et al Building multi-feature fusion refined network for building extraction from high-resolution remote sensing images[J]. Remote Sensing, 2021, 13 (14): 2794
doi: 10.3390/rs13142794
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
20 |
GAO Z, XIE J, WANG Q, et al. Global second-order pooling convolutional networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3024-3033.
|
21 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3146-3154.
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n. ], 2018: 3-19.
|
23 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l. ]: IEEE, 2020.
|
24 |
LIN M, CHEN Q, YAN S. Network in network [EB/OL]. (2014-03-04)[2022-01-05]. https://arxiv.org/abs/1312.4400.
|
25 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning. Lille: PMLR, 2015: 448-456.
|
26 |
WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 1451-1460.
|
27 |
JI S, WEI S, MENG L Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57 (1): 574- 586
|
28 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30)[2022-01-05]. https://arxiv.org/abs/1412.6980.
|
29 |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation [C]// 2016 4th International Conference on 3D Vision. Stanford: IEEE, 2016: 565-571.
|
30 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
31 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n. ], 2018: 801-818.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|