智能机器人 |
|
|
|
|
层次型非线性子空间字典学习 |
周国华1,2,3( ),卢剑伟1,2,倪彤光2,胡学龙3 |
1. 常州工业职业技术学院 信息工程学院,江苏 常州 213164 2. 常州大学 计算机与人工智能学院,江苏 常州 213164 3. 扬州大学 信息工程学院,江苏 扬州 225127 |
|
Hierarchical nonlinear subspace dictionary learning |
Guo-hua ZHOU1,2,3( ),Jian-wei LU1,2,Tong-guang NI2,Xue-long HU3 |
1. Department of Information Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou 213164, China 2. School of Computer Science and Artifical Intelligence, Changzhou University, Changzhou 213164, China 3. College of Information Engineering, Yangzhou University, Yangzhou 225127, China |
引用本文:
周国华,卢剑伟,倪彤光,胡学龙. 层次型非线性子空间字典学习[J]. 浙江大学学报(工学版), 2022, 56(6): 1159-1167.
Guo-hua ZHOU,Jian-wei LU,Tong-guang NI,Xue-long HU. Hierarchical nonlinear subspace dictionary learning. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1159-1167.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.013
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1159
|
1 |
CHENG G, XIE X, HAN J, et al Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735- 3756
doi: 10.1109/JSTARS.2020.3005403
|
2 |
XU K, HUANG H, DENG P, et al Two-stream feature aggregation deep neural network for scene classification of remote sensing images[J]. Information Sciences, 2020, 539: 250- 268
doi: 10.1016/j.ins.2020.06.011
|
3 |
SHAWKY O A, HAGAG A, EL-DAHSHAN E, et al Remote sensing image scene classification using CNN-MLP with data augmentation[J]. Optik, 2020, 221: 165356
doi: 10.1016/j.ijleo.2020.165356
|
4 |
高雪艳, 潘安宁, 杨扬 基于图像混合特征的城市绿地遥感图像配准[J]. 浙江大学学报: 工学版, 2019, 53 (6): 1205- 1217 GAO Xue-yan, PAN An-ning, YANG Yang Urban green space remote sensing image registration using image mixed features[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (6): 1205- 1217
|
5 |
王昶, 张永生, 王旭, 等 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2138- 2148 WANG Xu, ZHANG Yong-sheng, WANG Xu, et al Remote sensing image change detection method based on deep neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2138- 2148
|
6 |
RAZAQUE A, BEN HAJ FREJ M, ALMI'ANI M, et al Improved support vector machine enabled radial basis function and linear variants for remote sensing image classification[J]. Sensors, 2021, 21 (13): 4431
doi: 10.3390/s21134431
|
7 |
PASTORINO M, MONTALDO A, FRONDA L, et al Multisensor and multiresolution remote sensing image classification through a causal hierarchical Markov framework and decision tree ensembles[J]. Remote Sensing, 2021, 13 (5): 849
doi: 10.3390/rs13050849
|
8 |
PAN H, JIA Y, ZHAO D, et al A tidal flat wetlands delineation and classification method for high-resolution imagery[J]. International Journal of Geo-Information, 2021, 10 (7): 451
doi: 10.3390/ijgi10070451
|
9 |
YU D, XU Q, GUO H, et al An efficient and lightweight convolutional neural network for remote sensing image scene classification[J]. Sensors, 2020, 20 (7): 1999
doi: 10.3390/s20071999
|
10 |
YANG X, YAN W, NI W, et al Object-guided remote sensing image scene classification based on joint use of deep-learning classifier and detector[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2673- 2684
doi: 10.1109/JSTARS.2020.2996760
|
11 |
王协, 章孝灿, 苏程 基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类[J]. 浙江大学学报: 理学版, 2020, 47 (6): 715- 723 WANG Xie, ZHANG Xiao-can, SU Cheng Land use classification of remote sensing images based on multi-scale learning and deep convolution neural network[J]. Journal of Zhejiang University: Science Edition, 2020, 47 (6): 715- 723
|
12 |
CHENG G, ZHOU P, HAN J, et al Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images[J]. IET Computer Vision, 2015, 9 (5): 639- 647
doi: 10.1049/iet-cvi.2014.0270
|
13 |
HUANG Z, CHEN H X, ZHOU T, et al Contrast-weighted dictionary learning based saliency detection for remote sensing images[J]. Pattern Recognition, 2021, 113: 107757
doi: 10.1016/j.patcog.2020.107757
|
14 |
XU M, JIA X, PICKERING M, et al Cloud removal based on sparse representation via multitemporal dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (5): 2998- 3006
doi: 10.1109/TGRS.2015.2509860
|
15 |
FERRARIS V, DOBIGEON N, CAVALCANTI Y, et al Coupled dictionary learning for unsupervised change detection between multimodal remote sensing images[J]. Computer Vision and Image Understanding, 2019, 189: 102817
doi: 10.1016/j.cviu.2019.102817
|
16 |
WANG L, GENG H, LIU P, et al Particle swarm optimization based dictionary learning for remote sensing big data[J]. Knowledge-Based Systems, 2015, 79: 43- 50
doi: 10.1016/j.knosys.2014.10.004
|
17 |
WANG X, WANG S, LI Y, et al Hyperspectral image sparse reconstruction model based on collaborative multidimensional correlation[J]. Applied Soft Computing, 2021, 105: 107250
doi: 10.1016/j.asoc.2021.107250
|
18 |
YANKELEVSKY Y, ELAD M Finding GEMS: multi-scale dictionaries for high-dimensional graph signals[J]. IEEE Transactions on Signal Processing, 2019, 67 (7): 1889- 1901
doi: 10.1109/TSP.2019.2899822
|
19 |
WANG A, LU J, CAI J, et al Unsupervised joint feature learning and encoding for RGB-D scene labeling[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 4459- 4473
doi: 10.1109/TIP.2015.2465133
|
20 |
LIU F, MA J, WANG Q Atom-substituted tensor dictionary learning enhanced convolutional neural network for hyperspectral image classification[J]. Neurocomputing, 2021, 455: 215- 228
doi: 10.1016/j.neucom.2021.05.051
|
21 |
DONOHO D L, HUO X Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47 (7): 2845- 2862
doi: 10.1109/18.959265
|
22 |
SINGHALV, AGGARWAL H K, TARIYAL S, et al Discriminative robust deep dictionary learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (9): 5274- 5283
doi: 10.1109/TGRS.2017.2704590
|
23 |
LI Z, LAI Z, YONG X, et al A locality-constrained and label embedding dictionary learning algorithm for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (2): 278- 293
doi: 10.1109/TNNLS.2015.2508025
|
24 |
PENG Y, LIU S, WANG X, et al Joint local constraint and fisher discrimination based dictionary learning for image classification[J]. Neurocomputing, 2020, 398: 505- 519
doi: 10.1016/j.neucom.2019.05.103
|
25 |
AHARON M, ELAD M, BRUCKSTERIN A K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311- 4322
doi: 10.1109/TSP.2006.881199
|
26 |
YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification [C]// Proceedings of 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose: ACM, 2010: 270-279.
|
27 |
ZHU Q, ZHONG Y, ZHAO B, et al Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (6): 747- 751
doi: 10.1109/LGRS.2015.2513443
|
28 |
XIA G S, YANG W, DELON J, et al. Structrual high-resolution satellite image indexing [C]// Proceeding of the ISPRS, TC VII Symposium: 100 Years ISPRS. Vienna: ISPRS, 2010: 298–303.
|
29 |
JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding [C]// Proceedings of the 22nd ACM International Conference on Multimedia. Utrecht: ACM, 2014: 675-678.
|
30 |
WEN J, TIAN Z, SHE H. Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding [C]// 2010 International Conference on Image Analysis and Signal Processing. Yantai: IEEE, 2010: 257-262.
|
31 |
QAYYUM A, SAEED MALIK A, SAAD N M. et al. Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach [J]. Neural Computation and Application. 2019, 31: 3587-3607.
|
32 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe: MIT Press, 2012: 1097-1105.
|
33 |
YU Y, LIU F A two-stream deep fusion framework for high-resolution aerial scene classification[J]. Computational Intelligence and Neuroscience, 2018, 2018: 8639367
|
34 |
ROMERO A, GATTA C, CAMPS-VALLS G Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (3): 1349- 1362
doi: 10.1109/TGRS.2015.2478379
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|