计算机与控制工程 |
|
|
|
|
基于YOLOv5s的无人机密集小目标检测算法 |
韩俊(),袁小平*(),王准,陈烨 |
中国矿业大学 信息与控制工程学院,江苏 徐州 221116 |
|
UAV dense small target detection algorithm based on YOLOv5s |
Jun HAN(),Xiao-ping YUAN*(),Zhun WANG,Ye CHEN |
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China |
引用本文:
韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.
Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN. UAV dense small target detection algorithm based on YOLOv5s. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1224-1233.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.018
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1224
|
1 |
奉志强, 谢志军, 包正伟, 等 基于改进 YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44 (3): 327106 FENG Zhi-qiang, XIE Zhi-jun, BAO Zheng-wei, et al Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (3): 327106
|
2 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
3 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
4 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1804.02767.
|
5 |
BOCHKOVSKIY A, WANG C Y, LIA O H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2022-06-20]. https://arxiv.org/abs/2004.10934.
|
6 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. [S.l.]: Springer, 2016: 21-37.
|
7 |
李科岑, 王晓强, 林浩, 等 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16 (1): 41- 58 LI Ke-cen, WANG Xiao-qiang, LIN Hao, et al Survey of one-stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (1): 41- 58
|
8 |
XIE L C, XUE Y L, YE J Z. UAV aerial photography target detection algorithm based on improved YOLOv5 [C]// Journal of Physics: Conference Series. [S.l.]: IOP Publishing, 2022, 2284(1): 012024.
|
9 |
YANG Y Z. Drone-view object detection based on the improved YOLOv5 [C]// Proceedings of the IEEE International Conference on Electrical Engineering, Big Data and Algorithms. Changchun: IEEE, 2022: 612-617.
|
10 |
吴萌萌, 张泽斌, 宋尧哲, 等. 基于自适应特征增强的小目标检测网络[J/OL]. 激光与光电子学进展, 2023, 60(6): 0610004. [20222-06-20]. https://www.opticsjournal.net/Articles/OJ7e6f90484b1776fd/References. WU Meng-meng, ZHANG Ze-bin, SONG Yao-zhe, et al. Small object detection network based on adaptive feature enhancement [J/OL]. Advances in Laser and Opt-oelectronics, 2023, 60(66): 0610004. [2022-06-20]. https://www.opticsjournal.net/Articles/OJ7e6f90484b1776fd/References.
|
11 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
12 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
13 |
LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1805.10180.
|
14 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759–8768.
|
15 |
ZHANG Y F, REN W, ZHANG Z, et al Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146- 157
doi: 10.1016/j.neucom.2022.07.042
|
16 |
LI Y , CHEN Y , WANG N , et al. Scale-aware trident networks for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6054-6063.
|
17 |
CHEN C, ZHANG Y, LV Q, et al. RRNet: a hybrid detector for object detection in drone-captured images [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 100-108.
|
18 |
ZHOU X, WANG D, KRAHENBUHL P. Objects as points [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1904.07850.
|
19 |
ALI S, SIDDIQUE A, ATES H F, et al. Improved YOLOv4 for aerial object detection [C]// Proceedings of the 29th Signal Processing and Communications Applications Conference. Istanbul: IEEE, 2021: 1-4.
|
20 |
ZHAO H, ZHOU Y, ZHANG L, et al Mixed YOLOv3-LITE: a lightweight real-time object detection method[J]. Sensors, 2020, 20 (7): 1861
doi: 10.3390/s20071861
|
21 |
DU D W, WEN L Y, ZHU P F, et al. VisDrone-DET2020: the vision meets drone object detection in image challenge results [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2020: 692-712.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|