Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 921-929    DOI: 10.3785/j.issn.1008-973X.2023.05.008
计算机技术与控制工程     
基于融合逆透射率图的水下图像增强算法
张剑钊(),郭继昌*(),汪昱东
天津大学 电气自动化与信息工程学院,天津 300072
Underwater image enhancement algorithm via fusing reverse medium transmission map
Jian-zhao ZHANG(),Ji-chang GUO*(),Yu-dong WANG
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(3081 KB)   HTML
摘要:

针对水下图像质量退化严重的问题,提出一种端到端的基于融合逆透射率图的水下图像增强算法. 将原始RGB图像和基于传统方法得到的逆透射率图分别输入到双流卷积神经网络的2个编码器中;通过跨模态特征融合模块使得2种图像信息充分融合互补,让网络更好地学习到水下光学成像的特点;通过特征增强模块,增强特征的表达能力;通过残差解码模块连接解码器和编码器,以补充和丰富RGB特征. 通过逆透射率图的水下图像增强算法以及跨模态跨尺度的信息融合,由粗到细地进行逐级处理,最终输出增强后的RGB图像. 实验结果表明,所提算法能够有效地提升水下图像视觉质量. 综合主观评价和客观评价,所提算法优于所对比的白平衡WB、直方图均衡化HE、Water-Net、UGAN、UWCNN、Ucolor 6种算法.

关键词: 逆透射率图水下图像增强水下光学成像双流卷积神经网络特征融合    
Abstract:

An end-to-end underwater image enhancement algorithm via fusing reverse medium transmission map was proposed to resolve the problem of quality degradation in the underwater images. The original RGB map and the reverse medium transmission map obtained by the traditional method were fed into two encoders of the proposed two-stream convolutional neural network. The information of two images was fully integrated through the cross-modality feature fusion module, and the network could learn the characteristics of underwater optical images well. The feature expression capabilities could be further strengthened through the feature enhancement modules. The decoder and encoder were connected via a residual decoding module to supply the RGB features. The underwater image enhancement algorithm via fusing reverse medium transmission map processes information from coarse to fine through cross-modality and cross-scale information fusion, and finally outputs an enhanced RGB image. The experimental results showed that the proposed algorithm could effectively improve the visual quality of underwater images. Taking into account both subjective evaluation and objective evaluation, the proposed algorithm was better than the six competing algorithms of white balance WB and histogram equalization HE, Water-Net, UGAN, UWCNN, Ucolor.

Key words: reverse medium transmission map    underwater image enhancement    underwater optical imaging    two-stream convolutional neural network    feature fusion
收稿日期: 2022-05-23 出版日期: 2023-05-09
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(62171315)
通讯作者: 郭继昌     E-mail: 2020234133@tju.edu.cn;jcguo@tju.edu.cn
作者简介: 张剑钊(1998—),男,硕士生,从事水下图像清晰化研究. orcid.org/0000-0002-5544-6515. E-mail: 2020234133@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张剑钊
郭继昌
汪昱东

引用本文:

张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.

Jian-zhao ZHANG,Ji-chang GUO,Yu-dong WANG. Underwater image enhancement algorithm via fusing reverse medium transmission map. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 921-929.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.008        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/921

图 1  基于融合逆透射率图的水下图像增强网络结构示意图
图 2  逆透射率流的特征提取器
图 3  所提跨模态特征融合模块
图 4  所提特征增强模块
图 5  各算法主观视觉对比结果
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
原图 4 144.966 6 14.494 5 0.695 4 6.090 0 0.494 2 1.882 9
WB[14] 4 246.773 4 14.517 4 0.686 2 5.981 7 0.477 4 1.860 5
HE[15] 3 885.061 3 14.303 6 0.737 2 7.141 3 0.604 4 2.461 3
Water-Net[13] 3 417.155 3 15.761 2 0.768 7 6.787 9 0.540 5 2.409 3
UGAN[10] 2 266.487 8 16.263 6 0.662 5 7.121 4 0.559 7 3.020 2
UWCNN[12] 2 159.017 0 17.045 3 0.767 0 6.530 7 0.549 4 4.125 1
Ucolor[17] 723.786 5 23.239 3 0.871 8 7.260 6 0.513 2 2.575 7
URMT-Net 636.919 4 22.933 8 0.886 2 7.355 7 0.564 0 2.868 5
表 1  合成数据集上各算法的客观评价指标
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
原图 1 324.763 9 18.258 0 0.815 0 6.745 0 0.504 4 2.840 7
WB[14] 1 455.735 0 17.926 1 0.804 1 6.761 9 0.542 9 2.873 1
HE[15] 1 164.861 4 18.863 8 0.874 9 7.817 3 0.664 0 3.620 7
Water-Net[13] 838.973 3 21.394 8 0.894 8 7.151 8 0.580 7 3.587 2
UGAN[10] 558.296 5 21.303 1 0.769 1 7.466 8 0.616 2 4.015 7
UWCNN[12] 2 804.303 1 15.089 1 0.710 8 6.309 1 0.483 7 2.983 2
Ucolor[17] 519.691 7 22.752 8 0.906 7 7.242 1 0.569 3 4.563 4
URMT-Net 489.336 1 22.305 0 0.902 1 7.484 7 0.599 0 3.786 2
表 2  真实数据集上各算法的客观评价指标
图 6  消融实验的主观视觉对比结果
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
无特征融合模块 674.632 2 22.567 8 0.882 6 7.347 2 0.559 0 2.870 2
无特征增强模块 678.910 3 22.576 5 0.881 4 7.368 9 0.562 2 2.879 1
无残差解码模块 722.180 6 22.336 1 0.879 0 7.332 0 0.561 8 2.857 9
URMT-Net 636.919 4 22.933 8 0.886 2 7.355 7 0.564 0 2.868 5
表 3  合成数据集上消融实验的客观评价指标
算法 MSE ↓ PSNR↑ SSIM↑ Entropy↑ UCIQE↑ UIQM↑
无特征融合模块 486.392 1 22.090 4 0.901 1 7.450 7 0.590 2 3.806 7
无特征增强模块 531.255 5 21.826 0 0.897 8 7.441 7 0.588 3 3.742 0
无残差解码模块 515.029 9 22.258 4 0.899 7 7.452 9 0.590 8 3.804 3
URMT-Net 489.336 1 22.305 0 0.902 1 7.484 7 0.599 0 3.786 2
表 4  真实数据集上消融实验的客观评价指标
1 IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method [C]// Proceedings of IEEE International Conference on Systems, Man and Cybernetics: IEEE, 2010: 1703-1709.
2 ANCUTI C, ANCUTI C O, HABER T. Enhancing underwater images and videos by fusion [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence RI: IEEE, 2012: 81-88.
3 HITAM M S, KUALA T, YUSSOF W, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement [C]// Proceedings of International Conference on Computer Applications Technology. Sousse, Tunisia, 2013: 1-5.
4 DREWSJR P, NASCIMENTO E R, BOTELHO S S C, et al Underwater depth estimation and image restoration based on singleimages[J]. IEEE Computer Graphics and Applications, 2016, 36 (2): 24- 35
doi: 10.1109/MCG.2016.26
5 LI C, GUO J, CHEN S, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging [C]// IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 1993-1997.
6 LI C, GUO J, CONG R, et al Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25 (12): 5664- 5677
doi: 10.1109/TIP.2016.2612882
7 AKKAYNAK D, TREIBITZ T. A revised underwater image formation model [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 6723-6732.
8 AKKAYNAK D, TREIBITZ T. Sea-Thru: a method for removing water from underwater images [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 1682-1691.
9 LI J, SKINNER K A, EUSTICE M, et al WaterGAN: unsupervised generative networkto enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3 (1): 387- 394
10 FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks [C]// IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 7159-7165.
11 ANWAR S, LI C, PORIKLI F. Deep underwater image enhancemen [EB/OL]. [2018-07-10]. https://arxiv.org/abs/1807.03528.
12 LI C, ANWAR S, PORIKLI F Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2019, 98 (1): 107038
13 LI C, GUO C, REN W, et al An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376- 4389
doi: 10.1109/TIP.2019.2955241
14 LIU Y C, CHAN W H, CHEN Y Q Automatic white balance for digital still camera[J]. IEEE Transactions on Consumer Electronics, 1995, 41 (3): 460- 466
doi: 10.1109/30.468045
15 HUMMEL R Image enhancement by histogram transformation[J]. IEEE Computer Graphics and Image Processing, 1977, 6 (2): 184- 195
doi: 10.1016/S0146-664X(77)80011-7
16 WANG Y, GUO J, GAO H UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250
doi: 10.1016/j.image.2021.116250
17 LI C, ANWAR S, HOU J, et al Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985- 5000
doi: 10.1109/TIP.2021.3076367
18 LU H, LI Y, ZHANG L Contrast enhancement for images in turbid water[J]. Journal of the Optical Society of America A, 2015, 32 (5): 886- 893
doi: 10.1364/JOSAA.32.000886
19 PENG Y T, K CAO, P C COSMAN Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27 (6): 2856- 2868
doi: 10.1109/TIP.2018.2813092
20 LI C, CONG R, PIAO Y, et al. RGB-D salient object detection with cross-modality modulation and selection [C]// European Conference on Computer Vision (ECCV). Cham: Springer, 2020: 225-241.
21 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
22 ZHAO H, GALLO O, FROSIO I, et al Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3 (1): 47- 57
23 JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-timestyle transfer and super-resolution [C]// European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 694-711.
24 LIU W, RABINOVICH A, BERG A C, Parsenet: looking wider to see better [EB/OL]. [2015-06-15]. https://arxiv.org/abs/1506.04579.
25 PANETTA K, GAO C, AGAIAN S Human-visual-system inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (3): 541- 551
doi: 10.1109/JOE.2015.2469915
[1] 杨帆,宁博,李怀清,周新,李冠宇. 基于语义增强特征融合的多模态图像检索模型[J]. 浙江大学学报(工学版), 2023, 57(2): 252-258.
[2] 张娜,戚旭磊,包晓安,吴彪,涂小妹,金瑜婷. 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(4): 783-794.
[3] 温佩芝,陈君谋,肖雁南,温雅媛,黄文明. 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报(工学版), 2022, 56(2): 213-224.
[4] 黄新宇,游帆,张沛,张昭,张柏礼,吕建华,徐立臻. 基于多分类及特征融合的静默活体检测算法[J]. 浙江大学学报(工学版), 2022, 56(2): 263-270.
[5] 于楠晶,范晓飚,邓天民,冒国韬. 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2392-2402.
[6] 张云佐,郭威,蔡昭权,李文博. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
[7] 李明,段立娟,王文健,恩擎. 基于显著稀疏强关联的脑功能连接分类方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2232-2240.
[8] 徐泽鑫,段立娟,王文健,恩擎. 基于上下文特征融合的代码漏洞检测方法[J]. 浙江大学学报(工学版), 2022, 56(11): 2260-2270.
[9] 杨栋杰,高贤君,冉树浩,张广斌,王萍,杨元维. 基于多重多尺度融合注意力网络的建筑物提取[J]. 浙江大学学报(工学版), 2022, 56(10): 1924-1934.
[10] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
[11] 陈岳林,田文靖,蔡晓东,郑淑婷. 基于密集连接网络和多维特征融合的文本匹配模型[J]. 浙江大学学报(工学版), 2021, 55(12): 2352-2358.
[12] 陈雪云,夏瑾,杜珂. 基于多线型特征增强网络的架空输电线检测[J]. 浙江大学学报(工学版), 2021, 55(12): 2382-2389.
[13] 郑浦,白宏阳,李伟,郭宏伟. 复杂背景下的小目标检测算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1777-1784.
[14] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[15] 林泓,卢瑶瑶. 聚焦难样本的区分尺度的文字检测方法[J]. 浙江大学学报(工学版), 2019, 53(8): 1506-1516.