计算机技术与控制工程 |
|
|
|
|
融合文本描述和层次类型的知识表示学习方法 |
李松1(),舒世泰1,郝晓红1,郝忠孝1,2 |
1. 哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080 2. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001 |
|
Knowledge representation learning method integrating textual description and hierarchical type |
Song LI1(),Shi-tai SHU1,Xiao-hong HAO1,Zhong-xiao HAO1,2 |
1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China 2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
李松,舒世泰,郝晓红,郝忠孝. 融合文本描述和层次类型的知识表示学习方法[J]. 浙江大学学报(工学版), 2023, 57(5): 911-920.
Song LI,Shi-tai SHU,Xiao-hong HAO,Zhong-xiao HAO. Knowledge representation learning method integrating textual description and hierarchical type. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 911-920.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.007
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/911
|
1 |
CHEN X J, JIA S B, XIANG Y A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 1- 21
|
2 |
舒世泰, 李松, 郝晓红, 等 知识图谱嵌入技术研究进展[J]. 计算机科学与探索, 2021, 15 (11): 2048- 2062 SHU Shi-tai, Li Song, HAO Xiao-hong, et al Knowledge graph embedding technology: a review[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15 (11): 2048- 2062
|
3 |
刘知远, 孙茂松, 林衍凯, 等 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53 (2): 247- 261 LIU Zhi-yuan, SUN Mao-song, LIN Yan-kai, et al Research progress of knowledge representation learning[J]. Journal of Computer Research and Development, 2016, 53 (2): 247- 261
|
4 |
BORDES A, USUNIER N, GARCÍA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Lake Tahoe: MITP, 2013: 2787-2795.
|
5 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec: AAAI, 2014: 1112-1119.
|
6 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin: AAAI, 2015: 2181-2187.
|
7 |
JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 687-696.
|
8 |
TransA: an adaptive approach for knowledge graph embedding [EB/OL].[2022-05-02]. http://arxiv.org/abs/1509.05490.
|
9 |
XIAO H, HUANG M L, ZHU X Y. TransG: a generative model for knowledge graph embedding [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 2316-2325.
|
10 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph and text jointly embedding[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1591-1601.
|
11 |
XIE R B, LIU Z Y, JIA J, et al. Representation learning of knowledge graphs with entity descriptions [C]// Proceedings of the 30th National Conference on Artificial Intelligence. Phoenix: AAAI, 2015: 2659-2665.
|
12 |
XIE R B, LIU Z Y, SUN M S. Representation learning of knowledge graphs with hierarchical types [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI, 2016: 2965-2971.
|
13 |
JI S X, PAN S R, ERIK C, et al A survey on knowledge graphs: representation, acquisition and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (2): 494- 514
|
14 |
ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: ACL, 2014: 1753-1762.
|
15 |
JIANG X T, WANG Q, LI P, et al. Relation extraction with multi-instance multi-label convolutional neural networks [C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics. Osaka: COC, 2016: 1471-1480.
|
16 |
HAN X, YU P F, LIU Z Y, et al. Hierarchical relationextraction with coarse-to-fine grained attention [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 2236-2245.
|
17 |
ZHANG N Y, DENG S M, SUN Z L, et al. Long-tail relation extraction via knowledge graph embeddings and graph convolution networks [C]// Proceedings of the 2019 Conference of the NAACL: Human Language Technologies. Minneapolis: ACL, 2019: 3016-3025.
|
18 |
TANG X, CHEN L, CUI J, et al Knowledge representation learning with entity descriptions, hierarchical types, and textual relations[J]. Information Processing and Management, 2019, 56: 809- 822
doi: 10.1016/j.ipm.2019.01.005
|
19 |
FAN M, ZHOU Q, CHANG E, et al. Transition-based knowledge graph embedding with relational mapping properties [C]// Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation. Phuket: ACL, 2014: 328-337.
|
20 |
FENG J, HUANG M L, WANG M D, et al. Knowledge graph embedding by flexible translation [C]// Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning. Cape Town: AAAI, 2016: 557-560.
|
21 |
NICKEL M, TRESP V, KRIEGEL H. A three-way model for collective learning on multi-relational data [C]// Proceedings of the 28th International Conference on Machine Learning. Washington: ACM, 2011: 809-816.
|
22 |
YANG B S, YIH W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases [C]// Proceedings of the 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015: 1-12.
|
23 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: IMLS, 2016: 2071-2080.
|
24 |
ZHANG Z, ZHUANG F Z, QU M, et al. Knowledge graph embedding with hierarchical relation structure [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 3198-3207.
|
25 |
FENG J, HUANG M L, YANG Y, et al. GAKE: Graph aware knowledge embedding [C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics. Osaka: COC, 2016: 641-651.
|
26 |
XIE R B, LIU Z Y, LUAN H B, et al. Image embodied knowledge representation learning [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: AAAI, 2017: 3140-3146.
|
27 |
TOUTANOVA K, LIN X V, YIH W T, et al. Compositional learning of embeddings for relation paths in knowledge base and text [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 1434-1444.
|
28 |
夏光兵, 李瑞轩, 辜希武, 等 融合多源信息的知识表示学习[J]. 计算机科学与探索, 2022, 16 (3): 591- 597 XIA Guang-bing, LI Rui-xuan, GU Xi-wu, et al Knowledge representation learning based on multi-source information combination[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (3): 591- 597
|
29 |
杜文倩, 李弼程, 王瑞 融合实体描述及类型的知识图谱表示学习方法[J]. 中文信息学报, 2020, 34 (7): 50- 59 DU Wen-qing, LI Bi-cheng, WANG Rui Representation learning of knowledge graph integrating entity description and entity type[J]. Journal of Chinese Information Processing, 2020, 34 (7): 50- 59
|
30 |
WANG P, ZHOU J JECI++: a modified joint knowledge graph embedding model for concepts and instances[J]. Big Data Research, 2021, 24: 1- 10
|
31 |
ZHAO F, XU T, JIN L J Q, et al Convolutional network embedding of text-enhanced representation for knowledge graph completion[J]. IEEE Internet of Things Journal, 2021, 8 (23): 16758- 16769
doi: 10.1109/JIOT.2020.3039750
|
32 |
MAHDISOLTANI F, BIEGA J, SUCHANEK F. Yago3: A knowledge base from multilingual wikipedias [C]// Proceedings of the 7th Biennial Conference on Innovative Data Systems Research. Asilomar: [s. n.], 2015: 1-11.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|