计算机技术 |
|
|
|
|
异质信息网络的互信息最大化社区搜索 |
王亚峰( ),周丽华*( ),陈伟,王丽珍,陈红梅 |
云南大学 信息学院,云南 昆明 650500 |
|
Community search with mutual information maximization over heterogeneous information networks |
Ya-feng WANG( ),Li-hua ZHOU*( ),Wei CHEN,Li-zhen WANG,Hong-mei CHEN |
School of Information Science and Engineering, Yunnan University, Kunming 650500, China |
引用本文:
王亚峰,周丽华,陈伟,王丽珍,陈红梅. 异质信息网络的互信息最大化社区搜索[J]. 浙江大学学报(工学版), 2023, 57(2): 287-298.
Ya-feng WANG,Li-hua ZHOU,Wei CHEN,Li-zhen WANG,Hong-mei CHEN. Community search with mutual information maximization over heterogeneous information networks. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 287-298.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.009
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I2/287
|
1 |
石川, 王睿嘉, 王啸 异质信息网络分析与应用综述[J]. 软件学报, 2022, 33 (2): 24 SHI Chuan, WANG Rui-jia, WANG Xiao A survey of heterogeneous information networks analysis and applications[J]. Journal of Software, 2022, 33 (2): 24
doi: 10.13328/j.cnki.jos.006357
|
2 |
REN Y, LIU B, HUANG C, et al. Heterogeneous deep graph infomax [C]// 8th International Conference on Learning Representations. New Orleans: ICLR, 2020.
|
3 |
WANG C, PAN S, HU R, et al. Attributed graph clustering: a deep attentional embedding approach [C]// Proceedings of the 28th International Joint Conferences on Artificial Intelligence Organization. Macao: IJCAI, 2019: 3670-3676.
|
4 |
FANG Y, HUANG X, QIN L, et al A survey of community search over big graphs[J]. The VLDB Journal, 2020, 29 (1): 353- 392
doi: 10.1007/s00778-019-00556-x
|
5 |
FANG Y, YANG Y, ZHANG W, et al Effective and efficient community search over large heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2020, 13 (6): 854- 867
|
6 |
YANG Y, FANG Y, LIN X, et al. Effective and efficient truss computation over large heterogeneous information networks[C]// 2020 IEEE 36th International Conference on Data Engineering (ICDE). [s.l.]: IEEE, 2020: 901-912.
|
7 |
QIAO L, ZHANG Z, YUAN Y, et al. Keyword-centric community search over large heterogeneous information networks [C]// 26th International Conference on Database Systems for Advanced Applications. Taipei: DASFAA, 2021: 158-173.
|
8 |
JIANG Y, RONG Y, CHENG H, et al. Query-driven graph convolutional networks for attributed community search [C]// 48th International Conference on Very Large Databases. Sydney: PVLDB, 2022.
|
9 |
竺俊超, 王朝坤 复杂条件下的社区搜索方法[J]. 软件学报, 2019, 30 (3): 21 ZHU Jun-chao, WANG Chao-kun Approaches to community search under complex conditions[J]. Journal of Software, 2019, 30 (3): 21
doi: 10.13328/j.cnki.jos.005699
|
10 |
JIAN X, WANG Y, CHEN L Effective and efficient relational community detection and search in large dynamic heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2020, 13 (10): 1723- 1736
doi: 10.14778/3401960.3401969
|
11 |
GAO J, CHEN J, LI Z, et al ICS-GNN: lightweight interactive community search via graph neural network[J]. Proceedings of the VLDB Endowment, 2021, 14 (6): 1006- 1018
doi: 10.14778/3447689.3447704
|
12 |
BELGHAZI M I, BARATIN A, RAJESWAR S, et al. MINE: mutual information neural estimation [C]// Proceedings of the 35th International Conference on Machine Learning. Stockholm: ICML, 2018: 531-540.
|
13 |
KINNEY J B, ATWAL G S Equitability, mutual information, and the maximal information coefficient[J]. Proceedings of the National Academy of Sciences, 2014, 111 (9): 3354- 3359
doi: 10.1073/pnas.1309933111
|
14 |
ZHANG T, XIONG Y, ZHANG J, et al. CommDGI [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1843-1852.
|
15 |
VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph infomax [C]// 7th International Conference on Learning Representations. New Orleans: ICLR, 2019.
|
16 |
HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization [C]// 7th International Conference on Learning Representations. New Orleans: ICLR, 2019.
|
17 |
周丽华, 王家龙, 王丽珍,等 异质信息网络表征学习综述[J]. 计算机学报, 2022, 45 (1): 30 ZHOU Li-hua, WANG Jia-long, WANG Li-zhen, et al Heterogeneous information network representation learning: a survey[J]. Chinese Journal of Computers, 2022, 45 (1): 30
doi: 10.11897/SP.J.1016.2022.00160
|
18 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// 5th International Conference on Learning Representations. Toulon: ICLR, 2017.
|
19 |
WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]// WWW ’19: The World Wide Web Conference. [s.l.]: ACM, 2019: 2022–2032.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|