Please wait a minute...
J4  2012, Vol. 46 Issue (1): 156-162    DOI: 10.3785/j.issn.1008-973X.2012.01.25
机械工程     
基于故障-测点互信息的传感器多目标优化配置
于保华1,2, 杨世锡1,周晓峰1
1. 浙江大学 机械工程学系,浙江 杭州 310027 ;2. 杭州电子科技大学 机械工程学院,浙江 杭州 310018
Optimization  of sensor allocation based on
fault-measurement point mutual information
YU Bao-hua1,2 , YANG Shi-xi1, ZHOU Xiao-feng1
1. Department of Mechanical Engineering,Zhejiang University, Hangzhou 310027, China;
2. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF  HTML
摘要:

针对大型流程工业系统状态监测故障诊断的传感器优化配置特点,建立能够定量反映测点获取故障信息效率的故障-测点互信息矩阵.提出传感器系统测点-故障关联度优化目标函数,建立兼顾测点获取故障信息效率、传感器系统可靠性、经济性的多目标优化配置模型.设计改进的非支配排序遗传算法(NSGA-II),在保证故障可检测性和可分辨性的前提下,获得兼顾3大优化目标的Pareto前沿解集.电站除氧器的实例分析表明了该方法的可行性和有效性.

Abstract:

A matrix of fault-measurement point mutual information was proposed which can quantitatively reflect the efficiency of the fault diagnose information obtained by the measurement point in order to find the optimized allocation of sensors for large process industries to meet the fault diagnose requirement. An optimized target function based on the correlation of measurement point to fault on the sensor system was created. A multi-objective optimized allocation model was conducted which can consider the following three things: the efficiency of the fault diagnosis information obtained by the measurement point, the reliability of sensor systems and the cost factor. A promoted non-dominated sorted genetic algorithm-II (NSGA-II) was designed, which can gain Pareto front solutions including three above-mentioned optimized-targets under the premise of assuring the detectability and separability of fault. The case of power plant deaerator shows that the method is  feasible and effective.

出版日期: 2012-02-22
:  TP 277  
基金资助:

国家“863”高技术研究发展计划资助项目(2008AA04Z410);国家自然科学基金资助项目(50675194);浙江省自然科学基金资助项目(Y1080843) .

通讯作者: 杨世锡,男,教授,博导.     E-mail: yangsx@zju.edu.cn
作者简介: 于保华(1978-),男,工程师,从事大型旋转机械状态监测与故障诊断的研究.E-mail:yubaohua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

于保华, 杨世锡,周晓峰. 基于故障-测点互信息的传感器多目标优化配置[J]. J4, 2012, 46(1): 156-162.

YU Bao-hua , YANG Shi-xi, ZHOU Xiao-feng. Optimization  of sensor allocation based on
fault-measurement point mutual information. J4, 2012, 46(1): 156-162.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.01.25        http://www.zjujournals.com/eng/CN/Y2012/V46/I1/156

[1] BAGAJEWICZ M, FUXMAN A. Instrumentation network design and upgrade for process monitoring and fault detection [J]. AIChE Journal, 2004, 50 (8): 1870-1880.
[2] 张亮, 张凤鸣. 装备健康管理中的传感器优化配置问题研究 [J]. 传感器与微系统, 2008, 27(7): 18-20.
ZHANG Liang, ZHANG Fengming. Research on optimal sensor placement in equipment health management [J]. Transducer and Microsystem Technologies, 2008, 27(7): 18-20.
[3] ZHANG G. Optimum sensor localization/selection in a diagnostic/prognostic architecture [D]. Atlanta: Georgia Institute of Technology, 2005.
[4] 张复春, 张凤鸣, 顾文灿. 关于测点分布的矩阵分析 [J]. 测试技术学报, 2004, 18 (2): 114-117.
ZHANG Fuchun, ZHANG Fengming, GU Wencan. The matrix analysis about the distribution of the measuring points [J]. Journal of Test and Measurement Technology, 2004, 18(2): 114-117.
[5] 杨帆, 萧德云. 故障检测的可靠性描述及传感器分布优化算法 [J]. 应用科学学报, 2006, 24 (2): 125-130.
YANG Fan, XIAO Deyun. Reliability description of fault detection and optimization algorithm of sensor location [J]. Journal of Applied Sciences, 2006, 24(2): 125-130.
[6] 常迥. 信息理论基础 [M]. 北京: 清华大学出版社, 1993: 14-25.
[7] 张耀辉, 许军, 徐宗昌. 基于最大故障特征信息量准则的故障搜索策略 [J]. 振动.测试与诊断, 2005, 25(4): 299-302.
ZHANG Yaohui, XU Jun, XU Zongchang. Fault search strategy based on rule of maximum fault signature information content [J]. Journal of Vibration Measurement and Diagnosis, 2005, 25(4): 299-302.
[8] 黄亮, 侯建军, 刘颖, 等. 基于灰关联熵的模拟电路测试点优选算法 [J]. 电子测量与仪器学报, 2009, 23(9): 27-32.
HUANG Liang, HOU Jianjun, LIU Ying, et al. Algorithm of selecting optimal test point for analog circuit based on grey relational entropy [J]. Journal of Electronic Measurement and Instrument, 2009, 23(9): 27-32.
[9] 吴众华, 张土乔, 黄亚东, 等. 基于可靠性的给水管网传感器多目标选址 [J]. 浙江大学学报: 工学版, 2009, 43(6): 1060-1064.
WU Zhonghua, ZHANG Tuqiao, HUANG Yadong, et al. Reliability based multiobjective sensor location in water distribution systems [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(6): 1060-1064.
[10] 张连振, 黄侨, 王潮海. 基于多目标遗传算法的传感器优化布点研究 [J]. 工程力学, 2007, 24 (4): 168-172.
ZHANG Lianzhen, HUANG Qiao, WANG Chaohai. Optimal sensor placement based on multiobject genetic algorithm [J]. Engineering Mechanics, 2007, 24(4): 168-172.
[11] 曹文亮, 王兵树, 马进, 等. 基于符号有向图节点定量化模型的故障诊断方法 [J]. 中国电机工程学报, 2006, 26 (7): 67-71.
CAO Wenliang, WANG Bingshu, MA Jin, et al. Research on fault diagnosis approach using quantitative knowledge of the node of signed directed graph [J].Proceedings of the CSEE, 2006, 26(7): 67-71.
[12] 曹文亮, 王兵树, 马永光, 等. 基于 SDG 深层知识模型的电站热力系统故障诊断方法 [J]. 华北电力大学学报, 2005, 32 (5): 79-83.
CAO Wenliang, WANG Bingshu, MA Yongguang, et al. Fault diagnosis based on deep knowledge model of signed directed graph in power plant thermal system [J].Journal of North China Electric Power University, 2005, 32(5): 79-83.
[13] ABIDO M A. Multiobjective evolutionary algorithms for electric power dispatch problem [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 315-329.

[1] 李德骏, 杨竣程, 林冬冬, 杨灿军, 金波, 陈鹰. 单片机与CPLD技术的海底接驳盒
电能监控系统
[J]. J4, 2012, 46(8): 1369-1374.
[2] 段斌, 梁军, 费正顺, 杨敏, 胡斌. 基于GA-ANN的非线性半参数建模方法[J]. J4, 2011, 45(6): 977-983.
[3] 徐贵斌, 周东华. 基于在线学习神经网络的状态依赖型故障预测[J]. J4, 2010, 44(7): 1251-1254.
[4] 杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259.
[5] 林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.