机械与能源工程 |
|
|
|
|
基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测 |
李飞1,2( ),胡坤1,2,3,*( ),张勇2,王文善1,蒋浩1 |
1. 安徽理工大学 机械工程学院,安徽 淮南 232001 2. 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001 3. 安徽理工大学 环境友好材料与职业健康研究院,安徽 芜湖 241003 |
|
Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention |
Fei LI1,2( ),Kun HU1,2,3,*( ),Yong ZHANG2,Wen-shan WANG1,Hao JIANG1 |
1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China 2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China 3. Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, 241003, China |
引用本文:
李飞,胡坤,张勇,王文善,蒋浩. 基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2156-2167.
Fei LI,Kun HU,Yong ZHANG,Wen-shan WANG,Hao JIANG. Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2156-2167.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.006
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2156
|
1 |
杨小林, 葛世荣, 祖洪斌, 等 带式输送机永磁智能驱动系统及其控制策略[J]. 煤炭学报, 2020, 45 (6): 2116- 2126 YANG Xiao-lin, GE Shi-rong, ZU Hong-bin, et al The permanent magnet intelligent drive system of belt conveyor and its control strategy[J]. Journal of China Coal Society, 2020, 45 (6): 2116- 2126
doi: 10.13225/j.cnki.jccs.zn20.0345
|
2 |
PETRIKOVA I, MARVALOVA B, SAMAL S, et al Digital image correlation as a measurement tool for large deformations of a conveyor belt[J]. Applied Mechanics and Materials, 2015, 732: 77- 80
doi: 10.4028/www.scientific.net/AMM.732.77
|
3 |
曹虎奇 煤矿带式输送机撕带断带研究分析[J]. 煤炭科学技术, 2015, 43 (Suppl.2): 130- 134 CAO Hu-qi Research and analysis on tearing and breaking belt of coal mine belt conveyor[J]. Coal Science and Technology, 2015, 43 (Suppl.2): 130- 134
|
4 |
刘伟力, 乔铁柱 矿用输送带纵向撕裂检测系统研究[J]. 工矿自动化, 2017, 43 (2): 78- 81 LIU Wei-li, QIAO Tie-zhu Research on longitudinal tear detection system of mine conveyor belt[J]. Industrial and Mining Automation, 2017, 43 (2): 78- 81
doi: 10.13272/j.issn.1671-251x.2017.02.017
|
5 |
PANG Y S, LODEWIJKS G. A novel embedded conductive detection system for intelligent conveyor belt monitoring [C]// IEEE International Conference on Service Operations and Logistics and Informatics. Shanghai: IEEE, 2006: 803-808.
|
6 |
LI X G, SHEN L F, MING Z X, et al Laser-based online machine vision detection for longitudinal rip of conveyor belt[J]. Optik, 2018, 168: 360- 369
doi: 10.1016/j.ijleo.2018.04.053
|
7 |
BLAZEJ R, JURDZIAK L, KOZLOWSKI T, et al The use of magnetic sensors in monitoring the condition of the core in steel cord conveyor belts-Tests of the measuring probe and the design of the diag belt system.[J]. Measurement, 2018, 123: 48- 53
doi: 10.1016/j.measurement.2018.03.051
|
8 |
YANG R Y, QIAO T Z, PANG Y S, et al Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement, 2020, 165: 107856
doi: 10.1016/j.measurement.2020.107856
|
9 |
HOU C C, QIAO T Z, ZHANG H T, et al Multispectral visual detection method for conveyor belt longitudinal tear[J]. Measurement, 2019, 143: 246- 257
doi: 10.1016/j.measurement.2019.05.010
|
10 |
王志星. 输送带纵向撕裂双目视觉在线检测系统研究与设计[D]. 太原: 太原理工大学, 2018: 33-40. WANG Zhi-xing. Research and design of binocular vision online detection system for longitudinal tearing of conveyor belt [D]. Taiyuan: Taiyuan University of Technology, 2018: 33-40.
|
11 |
刘伟力. 输送带纵向撕裂机器视觉在线监控系统研究[D]. 太原: 太原理工大学, 2017: 39-46. LIU Wei-li. Research on online monitoring system of conveyor belt longitudinal tearing based on machine vision [D]. Taiyuan: Taiyuan University of Technology, 2017: 39-46.
|
12 |
LI W W, LI C Q, YAN F L Research on belt tear detection algorithm based on multiple sets of laser line assistance[J]. Measurement, 2021, 174 (2): 109047
|
13 |
GIRSHICK R. Fast R-CNN [EB/OL]. [2021-09-15]. https://arxiv.org/abs/1504.08083.
|
14 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [EB/OL]. [2021-09-15]. https://arxiv.org/abs/1703.06870.
|
15 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
17 |
YANG J, LI S B, WANG Z, et al Real-time tiny part defect detection system in manufacturing using deep learning[J]. IEEE Access, 2019, 7 (1): 89278- 89291
|
18 |
LI Z Y, ZHU X N, ZHOU J. Intelligent monitoring system of coal conveyor belt based on computer vision technology [C]// International Conference on Dependable Systems and Their Applications. Harbin: IEEE, 2020: 359-364.
|
19 |
蒋镕圻, 彭月平, 谢文宣, 等 嵌入scSE模块的改进YOLOv4小目标检测算法[J]. 图学学报, 2021, 42 (4): 546- 555 JIANG Rong-qi, PENG Yue-ping, XIE Wen-xuan, et al Improved YOLOv4 small target detection algorithm embedded with scSE module[J]. Journal of Graphics, 2021, 42 (4): 546- 555
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
|
21 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2021-09-18]. https://arxiv.org/abs /1704.04861.
|
22 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [EB/OL]. [2021-09-18]. https://arxiv.org/abs/1707. 01083v2.
|
23 |
薄景文, 张春堂, 樊春玲, 等 改进YOLOv3的矿石输送带杂物检测方法[J]. 计算机工程与应用, 2021, 57 (21): 248- 255 BO Jing-wen, ZHANG Chun-tang, FAN Chun-ling, et al Improved YOLOv3 method for detecting trash on ore conveyor belts[J]. Computer Engineering and Applications, 2021, 57 (21): 248- 255
doi: 10.3778/j.issn.1002-8331.2105-0025
|
24 |
周宇杰, 徐善永, 黄友锐, 等 基于改进YOLOv4的输送带损伤检测方法[J]. 工矿自动化, 2021, 47 (11): 61- 65 ZHOU Yu-jie, XU Shan-yong, HUANG You-rui, et al Conveyor belt damage detection method based on improved YOLOv4[J]. Industry and Mine Automation, 2021, 47 (11): 61- 65
doi: 10.13272/j.issn.1671-251x.17843
|
25 |
JADERBERG M, KAREN S, ANDREW Z. Spatial transformer networks [J]. Advances in Neural Information Processing Systems, 2015 (28): 2017-2025.
|
26 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
27 |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|