Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1175-1185    DOI: 10.3785/j.issn.1008-973X.2023.06.013
机械工程     
In718合金激光粉末床熔融悬垂结构成形数值模拟与实验研究
王材桦1(),来旭辉1,杨欢庆2,魏正英1,*()
1. 西安交通大学 先进制造技术研究所,陕西 西安 710049
2. 中航工业西安航空发动机集团有限公司,陕西 西安 710021
Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy
Cai-hua WANG1(),Xu-hui LAI1,Huan-qing YANG2,Zheng-ying WEI1,*()
1. Institute of Advanced Manufacturing Technology, Xi'an Jiaotong University, Xi'an 710049, China
2. AVIC Xi’an Aero-Engine (Group) Limited, Xi’an 710021, China
 全文: PDF(2407 KB)   HTML
摘要:

针对激光粉末床熔融 (LPBF)成形中点阵倾斜支杆的悬垂打印质量问题, 以In718悬垂熔道为研究单元,建立三维介观数值模型. 基于离散单元法在建模软件EDEM中建立粉末床模型, 基于有限体积法在Flow-3D中实现LPBF熔道成形过程, 通过数值模拟分析激光-粉末颗粒相互作用的流动、传热、熔化、凝固过程. 结果表明, 实体-粉末交界区域容易出现不连续的熔道, 改善工艺参数可以提高该区域熔道成形的连续性. 在低能量密度(44.19 J/mm3)下, 施加高激光功率(300 W)不会产生匙孔缺陷, 能够以比低激光功率(87.5 W)更强的马兰戈尼流动、更快的熔池流动速度填充不连续点, 提高实体-粉末交界区域的熔道连续性.

关键词: 激光粉末床熔融(LPBF)悬垂结构不连续性传热传质In718    
Abstract:

A three-dimensional mesoscopic numerical model of the In718 overhanging fusion channel was developed to address the problem of overhanging print quality of lattice tilting struts in laser powder bed fusion (LPBF). The powder bed was established in EDEM based on the discrete element method. The LPBF channel forming process was implemented in Flow-3D based on the finite volume method, and the flow, heat transfer, melting and solidification processes of the laser-powder particle interaction were analysed by numerical simulation. Results show that the solid-powder interface region is prone to discontinuous fusion channel, and improving the process parameters can improve the continuity of fusion channel forming in the region. The high laser power (300 W) applied at low energy density (44.19 J/mm3) not only does not produce keyhole defects, but also results in stronger Marangoni flow and faster melt pool flow than the low power group (87.5 W) to fill the discontinuities, and improves the continuity of the fusion channel in the solid-powder interface region.

Key words: laser powder bed fusion (LPBF)    overhang structure    discontinuity    heat and mass transfer    In718
收稿日期: 2022-05-14 出版日期: 2023-06-30
CLC:  TG 146.1  
基金资助: 军工基础性科研院所稳定支持项目(2019KGW-YY4007Tm)
通讯作者: 魏正英     E-mail: 3120101153@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
作者简介: 王材桦(1998—),男,硕士生,从事金属增材制造研究. orcid.org/0000-0002-7233-3651. E-mail: 3120101153@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王材桦
来旭辉
杨欢庆
魏正英

引用本文:

王材桦,来旭辉,杨欢庆,魏正英. In718合金激光粉末床熔融悬垂结构成形数值模拟与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1175-1185.

Cai-hua WANG,Xu-hui LAI,Huan-qing YANG,Zheng-ying WEI. Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1175-1185.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1175

图 1  激光粉末床熔融成形的示意图
图 2  计算流体力学域的网格划分
图 3  In718镍基高温合金的热物性参数随温度的变化
参数 数值
In718固相线Ts/K 1 533
In718液相线Tl/K 1 609
In718汽化温度Tv/K 3 188
熔化潜热Lsl/( J·kg?1) 2.27×105
蒸发潜热Lv/( J·kg?1) 7.34×105
M/( kg·mol?1) 0.059 75
激光吸收率系数α 0.3
环境温度Te/K 293.15
光斑半径ω/μm 40
表面辐射系数εr 0.36
Stefan-Boltzmann常数 σs/(W·m?2·K?4) 5.67×105
对流系数hc/(W·m?2·K?1) 10
环境压力p0/Pa 1.013×105
摩尔气体常数R/(J·mol?1·K?1) 8.314
表面张力系数σ/(N·m?1) 1.882
温度敏感系数( $ \text{dσ}·\text{d}{T}^{-1} $)/ (N·m?1·K?1) ?0.1×10?3
表 1  In718镍基高温合金数值仿真的初始输入参数
图 4  熔道形貌的仿真结果(左)与实验结果(右)对比
图 5  熔宽、熔深随能量密度的变化
样本 P/W vs/(mm·s?1) 扫描区域 ED/(J·mm?3)
A 290.0 900 实体 73.23
B 100.0 900 实体 25.25
C 400.0 900 实体 101.01
D 175.0 900 交界 44.19
E 290.0 900 交界 73.23
F 87.5 450 交界 44.19
G 262.5 1 350 交界 44.19
表 2  In718镍基高温合金的模拟仿真工艺参数
图 6  仿真试样的几何模型
图 7  实体-粉末交界区域悬垂熔道成形示意图
图 8  In718粉末材料的扫描电镜图像
图 9  悬垂结构实体支撑区域的温度场、速度场演化
图 10  350μs时温度沿熔池中心线的分布曲线
图 11  悬垂结构粉末支撑区域的温度场、速度场演化
图 12  900 μs时温度沿熔池中心的分布曲线
图 13  激光能量密度对实体支撑区域单道的温度分布与表面影响
图 14  激光能量密度对交界区域单道的温度分布与表面形貌影响
图 15  低能量密度下探测线A-B上的熔池温度变化
图 16  不同能量密度下熔池中心探测点的温度演化
图 17  工艺参数对交界区域单道的 温度分布与表面形貌影响
图 18  不同工艺参数下温度沿熔池中心线的分布
图 19  仿真中不同时刻的熔池形貌与温度、速度分布
1 尹华, 白培康, 刘斌 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 热加工工艺, 2010, 39 (1): 140- 144
YIN Hua, BAI Pei-kang, LIU Bin Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 2010, 39 (1): 140- 144
doi: 10.3969/j.issn.1001-3814.2010.01.045
2 方岱宁, 张一燕, 崔晓东. 轻质点阵材料力学与多功能设计 [M]. 北京: 科学出版社, 2009: 14-18.
3 YU B, HAN B, SU P B, et al Graded square honeycomb as sandwich core for enhanced mechanical performance[J]. Materials and Design, 2016, 89: 642- 652
doi: 10.1016/j.matdes.2015.09.154
4 巩水利, 锁红波, 李怀学 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, (13): 66- 71
GONG Shui-li, SUO Hong-bo, LI Huai-xue Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, (13): 66- 71
doi: 10.3969/j.issn.1671-833X.2013.13.012
5 赵冰, 李志强, 侯红亮, 等 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45 (8): 2189- 2200
ZHAO Bing, LI Zhi-qiang, HOU Hong-liang, et al Research progress of fabrication methods of metal three dimensional lattice structure[J]. Rare Metal Materials and Engineering, 2016, 45 (8): 2189- 2200
6 COVARRUBIAS E E, ESHRAGHI M Effect of build angle on surface properties of nickel superalloys processed by selective laser melting[J]. Journal of Metals, 2018, 70: 336- 342
doi: 10.1007/s11837-017-2706-y
7 LE K Q, WONG C H, CHUA K H G, et al Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120284
doi: 10.1016/j.ijheatmasstransfer.2020.120284
8 JING C, ZHU Y, WANG J, et al Investigation on morphology and mechanical properties of rod units in lattice structures fabricated by selective laser melting[J]. Materials, 2021, 14: 3994
doi: 10.3390/ma14143994
9 VRANA R, VAVERKA O, KOUTNY D, et al. Shape and dimensional analysis of lattice structures produced by selective laser melting [J]. MM Science Journal, 2020: 3938-3942.
10 ZHANG L, ZHANG S, ZHU H, et al Horizontal dimensional accuracy prediction of selective laser melting[J]. Materials and Design, 2018, 160: 9- 20
doi: 10.1016/j.matdes.2018.08.059
11 XIANG Z, WANG L, YANG C, et al Analysis of the quality of slope surface in selective laser melting process by simulation and experiments[J]. Optik, 2019, 176: 68- 77
doi: 10.1016/j.ijleo.2018.09.049
12 KING W, ANDERSON A T, FERENCZ R M, et al Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore national laboratory[J]. Materials Science and Technology, 2015, 31 (8): 957- 968
doi: 10.1179/1743284714Y.0000000728
13 WANG D, YANG Y, YI Z, et al Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1471- 1484
doi: 10.1007/s00170-012-4271-4
14 FENG S, CHEN S, KAMAT A M, et al Investigation on shape deviation of horizontal interior circular channels fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2020, 36: 101585
doi: 10.1016/j.addma.2020.101585
15 CHEN H, GU D, XIONG J, et al Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250: 99- 108
doi: 10.1016/j.jmatprotec.2017.06.044
16 KÖRNER C, ATTAR E, HEINL P Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211 (6): 978- 987
doi: 10.1016/j.jmatprotec.2010.12.016
17 TANG C, TAN J L, WONG C H A numerical investigation on the physical mechanisms of single track defects in selective laser melting[J]. International Journal of Heat and Mass Transfer, 2018, 126: 957- 968
doi: 10.1016/j.ijheatmasstransfer.2018.06.073
18 PANWISAWAS C, QIU C L, SOVANI Y, et al On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting[J]. Scripta Materialia, 2015, 105: 14- 17
doi: 10.1016/j.scriptamat.2015.04.016
19 TAN J L, TANG C, WONG C H A computational study on porosity evolution in parts produced by selective laser melting[J]. Metallurgical and Materials Transactions A, 2018, 49: 3663- 3673
doi: 10.1007/s11661-018-4697-x
20 YAN W, GE W, QIAN Y, et al Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134: 324- 333
doi: 10.1016/j.actamat.2017.05.061
21 RÖSLER F, BRÜGGEMANN D Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47: 1027- 1033
doi: 10.1007/s00231-011-0866-9
22 MILLS K C Recommended values of thermophysical properties for selected commercial alloy[J]. Aircraft Engineering and Aerospace Technology, 2002, 74 (5): 492
23 KRUTH J P, MERCELIS P, VAN VAERENBERGH J, et al. Feedback control of selective laser melting [C]// Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria: [s.n.], 2007: 521-527.
24 蒋军杰. 激光选区熔化成形TA15钛合金工艺、组织演变与力学性能研究[D]. 重庆: 重庆大学, 2020.
JIANG Jun-jie. Study on process, microstructure evolution and mechanical properties of TA15 titanium alloy by selective laser melting [D]. Chongqing: Chongqing University, 2020.
25 DARYAEI E, REZA RAHIMI TABAR M, MOSHFEGH A Z Surface roughness analysis of hydrophilic SiO2/TiO2/glass nano bilayers by the level crossing approach [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392 (9): 2175- 2181
doi: 10.1016/j.physa.2012.11.058
26 HITCHCOCK S J, CARROLL N T, NICHOLAS M G Some effects of substrate roughness on wettability[J]. Journal of Materials Science, 1981, 16: 714- 732
doi: 10.1007/BF02402789
[1] 汪超, 董飞英, 范利武, 俞自涛, 胡亚才. 盐水冷却塔传热传质特性的实验研究[J]. J4, 2014, 48(4): 666-670.
[2] 钱淼, 梅德庆, 刘宾虹, 陈子辰. 微凸台阵列型重整微反应器的传热传质特性[J]. J4, 2011, 45(8): 1387-1392.
[3] 李文春 胡桂林 刘永江 樊建人 岑可法. 熔融碳酸盐燃料电池的计算流体力学模拟[J]. J4, 2005, 39(10): 1638-1643.