机械工程 |
|
|
|
|
In718合金激光粉末床熔融悬垂结构成形数值模拟与实验研究 |
王材桦1( ),来旭辉1,杨欢庆2,魏正英1,*( ) |
1. 西安交通大学 先进制造技术研究所,陕西 西安 710049 2. 中航工业西安航空发动机集团有限公司,陕西 西安 710021 |
|
Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy |
Cai-hua WANG1( ),Xu-hui LAI1,Huan-qing YANG2,Zheng-ying WEI1,*( ) |
1. Institute of Advanced Manufacturing Technology, Xi'an Jiaotong University, Xi'an 710049, China 2. AVIC Xi’an Aero-Engine (Group) Limited, Xi’an 710021, China |
引用本文:
王材桦,来旭辉,杨欢庆,魏正英. In718合金激光粉末床熔融悬垂结构成形数值模拟与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1175-1185.
Cai-hua WANG,Xu-hui LAI,Huan-qing YANG,Zheng-ying WEI. Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1175-1185.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.013
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1175
|
1 |
尹华, 白培康, 刘斌 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 热加工工艺, 2010, 39 (1): 140- 144 YIN Hua, BAI Pei-kang, LIU Bin Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 2010, 39 (1): 140- 144
doi: 10.3969/j.issn.1001-3814.2010.01.045
|
2 |
方岱宁, 张一燕, 崔晓东. 轻质点阵材料力学与多功能设计 [M]. 北京: 科学出版社, 2009: 14-18.
|
3 |
YU B, HAN B, SU P B, et al Graded square honeycomb as sandwich core for enhanced mechanical performance[J]. Materials and Design, 2016, 89: 642- 652
doi: 10.1016/j.matdes.2015.09.154
|
4 |
巩水利, 锁红波, 李怀学 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, (13): 66- 71 GONG Shui-li, SUO Hong-bo, LI Huai-xue Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, (13): 66- 71
doi: 10.3969/j.issn.1671-833X.2013.13.012
|
5 |
赵冰, 李志强, 侯红亮, 等 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45 (8): 2189- 2200 ZHAO Bing, LI Zhi-qiang, HOU Hong-liang, et al Research progress of fabrication methods of metal three dimensional lattice structure[J]. Rare Metal Materials and Engineering, 2016, 45 (8): 2189- 2200
|
6 |
COVARRUBIAS E E, ESHRAGHI M Effect of build angle on surface properties of nickel superalloys processed by selective laser melting[J]. Journal of Metals, 2018, 70: 336- 342
doi: 10.1007/s11837-017-2706-y
|
7 |
LE K Q, WONG C H, CHUA K H G, et al Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120284
doi: 10.1016/j.ijheatmasstransfer.2020.120284
|
8 |
JING C, ZHU Y, WANG J, et al Investigation on morphology and mechanical properties of rod units in lattice structures fabricated by selective laser melting[J]. Materials, 2021, 14: 3994
doi: 10.3390/ma14143994
|
9 |
VRANA R, VAVERKA O, KOUTNY D, et al. Shape and dimensional analysis of lattice structures produced by selective laser melting [J]. MM Science Journal, 2020: 3938-3942.
|
10 |
ZHANG L, ZHANG S, ZHU H, et al Horizontal dimensional accuracy prediction of selective laser melting[J]. Materials and Design, 2018, 160: 9- 20
doi: 10.1016/j.matdes.2018.08.059
|
11 |
XIANG Z, WANG L, YANG C, et al Analysis of the quality of slope surface in selective laser melting process by simulation and experiments[J]. Optik, 2019, 176: 68- 77
doi: 10.1016/j.ijleo.2018.09.049
|
12 |
KING W, ANDERSON A T, FERENCZ R M, et al Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore national laboratory[J]. Materials Science and Technology, 2015, 31 (8): 957- 968
doi: 10.1179/1743284714Y.0000000728
|
13 |
WANG D, YANG Y, YI Z, et al Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1471- 1484
doi: 10.1007/s00170-012-4271-4
|
14 |
FENG S, CHEN S, KAMAT A M, et al Investigation on shape deviation of horizontal interior circular channels fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2020, 36: 101585
doi: 10.1016/j.addma.2020.101585
|
15 |
CHEN H, GU D, XIONG J, et al Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250: 99- 108
doi: 10.1016/j.jmatprotec.2017.06.044
|
16 |
KÖRNER C, ATTAR E, HEINL P Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211 (6): 978- 987
doi: 10.1016/j.jmatprotec.2010.12.016
|
17 |
TANG C, TAN J L, WONG C H A numerical investigation on the physical mechanisms of single track defects in selective laser melting[J]. International Journal of Heat and Mass Transfer, 2018, 126: 957- 968
doi: 10.1016/j.ijheatmasstransfer.2018.06.073
|
18 |
PANWISAWAS C, QIU C L, SOVANI Y, et al On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting[J]. Scripta Materialia, 2015, 105: 14- 17
doi: 10.1016/j.scriptamat.2015.04.016
|
19 |
TAN J L, TANG C, WONG C H A computational study on porosity evolution in parts produced by selective laser melting[J]. Metallurgical and Materials Transactions A, 2018, 49: 3663- 3673
doi: 10.1007/s11661-018-4697-x
|
20 |
YAN W, GE W, QIAN Y, et al Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134: 324- 333
doi: 10.1016/j.actamat.2017.05.061
|
21 |
RÖSLER F, BRÜGGEMANN D Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47: 1027- 1033
doi: 10.1007/s00231-011-0866-9
|
22 |
MILLS K C Recommended values of thermophysical properties for selected commercial alloy[J]. Aircraft Engineering and Aerospace Technology, 2002, 74 (5): 492
|
23 |
KRUTH J P, MERCELIS P, VAN VAERENBERGH J, et al. Feedback control of selective laser melting [C]// Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria: [s.n.], 2007: 521-527.
|
24 |
蒋军杰. 激光选区熔化成形TA15钛合金工艺、组织演变与力学性能研究[D]. 重庆: 重庆大学, 2020. JIANG Jun-jie. Study on process, microstructure evolution and mechanical properties of TA15 titanium alloy by selective laser melting [D]. Chongqing: Chongqing University, 2020.
|
25 |
DARYAEI E, REZA RAHIMI TABAR M, MOSHFEGH A Z Surface roughness analysis of hydrophilic SiO2/TiO2/glass nano bilayers by the level crossing approach [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392 (9): 2175- 2181
doi: 10.1016/j.physa.2012.11.058
|
26 |
HITCHCOCK S J, CARROLL N T, NICHOLAS M G Some effects of substrate roughness on wettability[J]. Journal of Materials Science, 1981, 16: 714- 732
doi: 10.1007/BF02402789
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|