环境工程 |
|
|
|
|
电阻加热活化过硫酸盐修复全氟辛酸污染土壤 |
邬刘涛1( ),詹明秀1,2,付建英3,焦文涛2,单永平2,张晨琛2,徐旭1,*( ) |
1. 中国计量大学 计量测试工程学院,浙江 杭州 310018 2. 中国科学院生态环境研究中心,北京 100085 3. 浙江大学 热能工程研究所,能源高效清洁利用全国重点实验室,浙江 杭州 310027 |
|
Electrical resistance heating activated persulfate for remediation of perfluorooctanoic acid-contaminated soil |
Liu-tao WU1( ),Ming-xiu ZHAN1,2,Jian-ying FU3,Wen-tao JIAO2,Yong-ping SHAN2,Chen-chen ZHANG2,Xu XU1,*( ) |
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China 2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
邬刘涛,詹明秀,付建英,焦文涛,单永平,张晨琛,徐旭. 电阻加热活化过硫酸盐修复全氟辛酸污染土壤[J]. 浙江大学学报(工学版), 2023, 57(6): 1257-1266.
Liu-tao WU,Ming-xiu ZHAN,Jian-ying FU,Wen-tao JIAO,Yong-ping SHAN,Chen-chen ZHANG,Xu XU. Electrical resistance heating activated persulfate for remediation of perfluorooctanoic acid-contaminated soil. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1257-1266.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.022
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1257
|
1 |
BRUTON T A, SEDLAK D L Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Environmental Science and Technology, 2017, 51 (23): 13878- 13885
doi: 10.1021/acs.est.7b03969
|
2 |
ZHAN J, ZHANG A, HÉROUX P, et al Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma[J]. Journal of Hazardous Materials, 2020, 387: 121688
doi: 10.1016/j.jhazmat.2019.121688
|
3 |
SUJA F, PRAMANIK B K, ZAIN S M Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper[J]. Water Science and Technology, 2009, 60 (6): 1533- 1544
doi: 10.2166/wst.2009.504
|
4 |
李飞, 陈轶丹, 周真明, 等 全氟辛酸(PFOA)厌氧生物可降解性[J]. 环境科学, 2016, 37 (12): 4773- 4779 LI Fei, CHEN Yi-dan, ZHOU Zhen-ming, et al Anaerobic biodegradability of perfluorooctanoic acid (PFOA)[J]. Environmental Science, 2016, 37 (12): 4773- 4779
doi: 10.13227/j.hjkx.201603155
|
5 |
BRUSSEAU M L, ANDERSON R H, GUO B PFAS concentrations in soils: background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740: 140017
doi: 10.1016/j.scitotenv.2020.140017
|
6 |
LUO Q, LIANG S, HUANG Q Laccase induced degradation of perfluorooctanoic acid in a soil slurry[J]. Journal of Hazardous Materials, 2018, 359: 241- 247
doi: 10.1016/j.jhazmat.2018.07.048
|
7 |
FALCIGLIA P P, VAGLIASINDI F G A Remediation of hydrocarbon polluted soils using 2.45 GHz frequency-heating: Influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics[J]. Journal of Geochemical Exploration, 2015, 151: 66- 73
doi: 10.1016/j.gexplo.2015.01.007
|
8 |
GIRI R R, OZAKI H, MORIGAKI T, et al UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution[J]. Water Science and Technology, 2011, 63 (2): 276- 282
doi: 10.2166/wst.2011.050
|
9 |
FLORES C, VENTURA F, MARTIN-ALONSO J, et al Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N. E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines[J]. Science of the Total Environment, 2013, 461-462: 618- 626
doi: 10.1016/j.scitotenv.2013.05.026
|
10 |
TROJANOWICZ M, BOJANOWSKA-CZAJKA A, BARTOSIEWICZ I, et al Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): a review of recent advances[J]. Chemical Engineering Journal, 2018, 336: 170- 199
doi: 10.1016/j.cej.2017.10.153
|
11 |
BRUTON T A, SEDLAK D L Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Chemosphere, 2018, 206: 457- 464
doi: 10.1016/j.chemosphere.2018.04.128
|
12 |
LEE Y, LO S, KUO J, et al Decomposition of perfluorooctanoic acid by microwaveactivated persulfate: effects of temperature, pH, and chloride ions[J]. Frontiers of Environmental Science and Engineering, 2012, 6: 17- 25
doi: 10.1007/s11783-011-0371-x
|
13 |
LEE Y C, LO S L, CHIUEH P T, et al Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research, 2010, 44 (3): 886- 892
doi: 10.1016/j.watres.2009.09.055
|
14 |
QIAN Y, GUO X, ZHANG Y, et al Perfluorooctanoic acid degradation using UV-persulfate process: modeling of the degradation and chlorate formation[J]. Environmental Science and Technology, 2016, 50 (2): 772- 781
doi: 10.1021/acs.est.5b03715
|
15 |
SÖRENGÅRD M, NIARCHOS G, JENSEN P E, et al Electrodialytic per- and polyfluoroalkyl substances (PFASs) removal mechanism for contaminated soil[J]. Chemosphere, 2019, 232: 224- 231
doi: 10.1016/j.chemosphere.2019.05.088
|
16 |
SÖRENGÅRD M, KLEJA D B, AHRENS L Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs)[J]. Journal of Hazardous Materials, 2019, 367: 639- 646
doi: 10.1016/j.jhazmat.2019.01.005
|
17 |
BAO Y, DENG S, JIANG X, et al Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): oxidation with UV/persulfate or reduction with UV/sulfite?[J]. Environmental Science and Technology, 2018, 52 (20): 11728- 11734
|
18 |
TURNER L P, KUEPER B H, JAANSALU K M, et al Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling[J]. Science of the Total Environment, 2021, 765: 142722
doi: 10.1016/j.scitotenv.2020.142722
|
19 |
WANG N, LV H, ZHOU Y, et al Complete defluorination and mineralization of perfluorooctanoic acid by mechanochemical method using alumina and persulfate[J]. Environmental Science and Technology, 2019, 53 (14): 8302- 8313
doi: 10.1021/acs.est.9b00486
|
20 |
LEI Y J, TIAN Y, SOBHANI Z, et al Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate[J]. Chemical Engineering Journal, 2020, 388: 124215
doi: 10.1016/j.cej.2020.124215
|
21 |
HAN Z, JIAO W, TIAN Y, et al Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 124496
doi: 10.1016/j.chemosphere.2019.124496
|
22 |
COSTANZA J, MARCET T, CÁPIRO N L, et al Tetrachloroethene release and degradation during combined ERH and sodium persulfate oxidation[J]. Groundwater Monitoring and Remediation, 2017, 37 (4): 43- 50
doi: 10.1111/gwmr.12251
|
23 |
HAN Z, LI S, YUE Y, et al Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2021, 198: 110457
doi: 10.1016/j.envres.2020.110457
|
24 |
CHOWDHURY A I A, GERHARD J I, REYNOLDS D, et al Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: proof of concept[J]. Environmental Science and Technology, 2017, 51 (22): 13295- 13303
doi: 10.1021/acs.est.7b02231
|
25 |
ZAREITALABAD P, SIEMENS J, HAMER M, et al Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater: a review on concentrations and distribution coefficients[J]. Chemosphere, 2013, 91 (6): 725- 732
doi: 10.1016/j.chemosphere.2013.02.024
|
26 |
袁娜娜 室内环刀法测定土壤田间持水量[J]. 中国新技术新产品, 2014, 9: 184 YUAN Na-na Determination of soil field water capacity by indoor ring knife method[J]. New Technology and New Products of China, 2014, 9: 184
doi: 10.3969/j.issn.1673-9957.2014.16.148
|
27 |
FANG G, CHEN X, WU W, et al Mechanisms of interaction between persulfate and soil constituents: activation, free radical formation, conversion, and identification[J]. Environmental Science and Technology, 2018, 52 (24): 14352- 14361
doi: 10.1021/acs.est.8b04766
|
28 |
FRIIS A K, HERON G, ALBRECHTSEN H J, et al Anaerobic dechlorination and redox activities after full-scale Electrical Resistance Heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006, 88 (3/4): 219- 234
|
29 |
张凤君, 刘哲华, 苏小四, 等 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报: 地球科学版, 2018, 48 (4): 1212- 1220 ZHANG Feng-jun, LIU Zhe-hua, SU Xiao-si, et al Effects of soil types and composition on oxidative degradation of volatile chlorinated hydrocarbons by thermally activated persulfate[J]. Journal of Jilin University: Earth Science Edition, 2018, 48 (4): 1212- 1220
|
30 |
郭丽, 袁颐进, 冯丽贞, 等 电活化过硫酸盐降解全氟辛酸及其中间产物的探究分析[J]. 环境科学学报, 2020, 40 (6): 2045- 2054 GUO Li, YUAN Yi-jin, FENG Li-zhen, et al Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae, 2020, 40 (6): 2045- 2054
|
31 |
LIU C S, HIGGINS C P, WANG F, et al Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water[J]. Separation and Purification Technology, 2012, 91: 46- 51
doi: 10.1016/j.seppur.2011.09.047
|
32 |
KO S, CRIMI M, MARVIN B K, et al Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils[J]. Journal of Environmental Management, 2012, 108: 42- 48
doi: 10.1016/j.jenvman.2012.04.034
|
33 |
PARK S, LEE L S, MEDINA V F, et al Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376- 383
doi: 10.1016/j.chemosphere.2015.11.097
|
34 |
LIU G, LI C, STEWART B A, et al Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid[J]. Chemical Engineering Journal, 2020, 399: 125722
doi: 10.1016/j.cej.2020.125722
|
35 |
CAI S, HU X, LU D, et al Ferrous-activated persulfate oxidation of triclosan in soil and groundwater: the roles of natural mineral and organic matter[J]. Science of the Total Environment, 2021, 762: 143092
doi: 10.1016/j.scitotenv.2020.143092
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|