Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 2058-2066    DOI: 10.3785/j.issn.1008-973X.2020.10.024
生物医学工程     
基于变分模态分解的心冲击信号和呼吸信号分离
童基均1(),柏雁捷1,潘剑威2,杨佳锋1,蒋路茸1,*()
1. 浙江理工大学 信息学院,浙江 杭州 310018
2. 浙江大学医学院附属第一医院 神经外科,浙江 杭州 310003
Ballistocardiogram and respiratory signal separation based on variational mode decomposition
Ji-jun TONG1(),Yan-jie BAI1,Jian-wei PAN2,Jia-feng YANG1,Lu-rong JIANG1,*()
1. School of Information Sciences and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Department of Neurosurgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
 全文: PDF(5793 KB)   HTML
摘要:

为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程. 信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号. 基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善. 采用Bland-Altman法,对标准结果和实验重构结果进行一致性评价. 结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性.

关键词: 心冲击信号(BCG)变分模态分解(VMD)柔性压力传感器非入侵方式Bland-Altman    
Abstract:

A resistive film pressure sensor was embedded in the mattress, and the variational modal decomposition (VMD) algorithm was introduced into the two-dimensional physiological signal extraction process in order to monitor the ballistocardiogram (BCG) and respiratory signal in a non-invasive manner during sleep. The VMD algorithm was used to decompose the potential components of the BCG signal and respiratory signal in the physiological signal after the signal passes through the flexible pressure sensor in the mattress, hardware low-pass filtering, and digital detrending (DFA). The effective components were adaptively selected to reconstruct the BCG signal and the respiratory signal. The instantaneous frequencies of VMD, empirical mode decomposition (EMD), and complementary set empirical mode decomposition (CEEMD) components were compared based on Hilbert transform. The aliasing situation of VMD in 0~3.0 Hz was improved compared with EMD and CEEMD. The Bland-Altman method was used to evaluate the consistency of the standard results and experimental reconstruction results. Results show that 93.75% and 92.5% of the BCG and respiratory signals obtained by the VMD method are within the standard limit of 95% consistency, and there is a high consistency.

Key words: ballistocardiogram (BCG)    variational mode decomposition (VMD)    flexible pressure sensor    non-invasive manner    Bland-Altman
收稿日期: 2019-09-17 出版日期: 2020-10-28
CLC:  R 318  
基金资助: 浙江省重点研发计划资助项目(2015C03023);浙江理工大学基本科研业务费资助项目(2019Q042);浙江理工大学“521人才培养计划”资助项目
通讯作者: 蒋路茸     E-mail: jijuntong@zstu.edu.cn;jianglurong@zstu.edu.cn
作者简介: 童基均(1977—),男,教授,从事传感器及检测技术、计算机视觉的研究. orcid.org/0000-0002-6209-6605. E-mail: jijuntong@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
童基均
柏雁捷
潘剑威
杨佳锋
蒋路茸

引用本文:

童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.

Ji-jun TONG,Yan-jie BAI,Jian-wei PAN,Jia-feng YANG,Lu-rong JIANG. Ballistocardiogram and respiratory signal separation based on variational mode decomposition. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2058-2066.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.024        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/2058

图 1  心冲击信号典型波形
图 2  生理信号分解重构流程图
图 3  生理信号采集装置
图 4  原始信号去趋势前、后的对比
图 5  
图 5  不同算法的分解结果对比
图 6  利用不同算法分解后的Hilbert-Huang谱对比
分量 Pb
1 2 3 4 5 6 7 8 9 10
EMD呼吸能量 0.000 8 0.010 2 0.011 0 0.044 5 0.128 3 0.820 7 0.576 9 0.132 6 0.002 2 0.001 2
EMD心冲击能量 0.014 5 0.140 1 0.415 8 0.577 7 0.280 7 0.046 5 0.112 3 0.136 9 0.003 6 0.002 1
CEEMD呼吸能量 0.001 4 0.002 7 0.011 6 0.085 0 0.901 7 0.621 5 0.119 0 0.001 8 0.001 6 0.000 9
CEEMD心冲击能量 0.014 2 0.212 4 0.442 4 0.388 2 0.171 6 0.168 5 0.130 0 0.009 0 0.000 5 0.000 4
VMD呼吸能量 0.858 1 0.251 7 0.004 8 0.002 3 0.000 6 0.000 3 0.000 2 0.000 2 0.000 1 0.000 1
VMD心冲击能量 0.105 3 0.111 6 0.394 0 0.318 9 0.303 7 0.068 5 0.021 2 0.008 1 0.003 9 0.001 1
表 1  生理信号能量占比分析
图 7  生理信号能量占比分析
图 8  不同分解方法下重构效果对比
图 9  基于Bland-Altman法的一致性分析
1 BROWN J H R, HOFFMAN M J, DE LALLA J V Ballistocardiographic findings in patients with symptoms of angina pectoris[J]. Circulation, 1950, 1 (1): 132- 140
doi: 10.1161/01.CIR.1.1.132
2 MOUKADEM A, FINNAOUI A, GASSARA H E, et al. Time-frequency domain for BCG analysis [C] // 2018 International Conference on Computer and Applications. Lebanon: ICCA, 2018: 226-230.
3 马莹, 王云峰, 张海英, 等 基于压电薄膜传感器的心率呼吸率实时监测[J]. 传感器与微系统, 2018, 37 (6): 119- 121
MA Ying, WANG Yun-feng, ZHANG Hai-ying, et al Real-time monitoring of heart rate and respiratory rate based on piezoelectric thin-film sensor[J]. Transducer and Microsystem Technologies, 2018, 37 (6): 119- 121
4 沈劲鹏, 王新安 适用于床垫式生理信号监测系统的信号处理方法[J]. 北京大学学报: 自然科学版, 2018, 54 (5): 921- 926
SHEN Jin-peng, WANG Xin-an Signal processing method for mattress-type physiological monitoring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (5): 921- 926
5 HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
6 WU Z, HUANG N E, CHEN X The multi-dimensional ensemble empirical mode decomposition method[J]. Advances in Adaptive Data Analysis, 2009, 1 (3): 339- 372
doi: 10.1142/S1793536909000187
7 WU Z, HUANG N E Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1 (1): 1- 41
doi: 10.1142/S1793536909000047
8 姜星, 耿读艳, 张园园, 等 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38 (2): 139- 148
JIANG Xing, GENG Du-yan, ZHANG Yuan-yuan, et al BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38 (2): 139- 148
9 杨丹, 徐彬, 叶琳琳, 等 心脏心冲击信号降噪方法研究[J]. 生物医学工程学杂志, 2014, 31 (6): 1368- 1372
YANG Dan, XU Bin, YE Lin-lin, et al De-noising method research of ballistocardiogram signal[J]. Journal of Biomedical Engineering, 2014, 31 (6): 1368- 1372
10 贾瑞生, 赵同彬, 孙红梅, 等 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58 (3): 1013- 1023
JIA Rui-sheng, ZHAO Tong-bin, SUN Hong-mei, et al Micro-seismic signal denoising method based on empirical mode decomposition amd independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58 (3): 1013- 1023
11 徐信, 李志华, 杨越 基于EMD-ICA的激电数据降噪处理方法[J]. 计算机应用研究, 2017, 34 (6): 1737- 1739
XU Xin, LI Zhi-hua, YANG Yue De-noising of ip data based on EMD-ICA[J]. Application Research of Computers, 2017, 34 (6): 1737- 1739
12 YEH J R, SHIEH J S, HUANG N E Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2 (2): 135- 156
doi: 10.1142/S1793536910000422
13 SMITH J S The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2 (5): 443- 454
doi: 10.1098/rsif.2005.0058
14 DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62 (3): 531- 544
15 RAJ S, RAY K C. Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis [C] // 2017 7th International Symposium on Embedded Computing and System Design. Durgapur, India: IEEE, 2017: 1-5.
16 ALVARADO S C, LUNA L P S, PALLàS A R An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform[J]. Biomedical Signal Processing and Control, 2016, 27: 96- 102
doi: 10.1016/j.bspc.2016.02.002
17 HUANG N E. Hilbert-Huang transform and its applications [M]. Singapore: World Scientific, 2014.
18 LI X, LI Z, WANG E, et al Analysis of natural mineral earthquake and blast based on Hilbert–Huang transform (HHT)[J]. Journal of Applied Geophysics, 2016, 128: 79- 86
doi: 10.1016/j.jappgeo.2016.03.024
19 苗晟, 王威廉, 姚绍文 Hilbert-Huang 变换发展历程及其应用[J]. 电子测量与仪器学报, 2014, 28 (8): 812- 818
MIAO Sheng, WANG Wei-lian, YAO Shao-wen Historic development of HTT and its applications[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28 (8): 812- 818
20 GIAVARINA D Understanding bland Altman analysis[J]. Biochemia Medica, 2015, 25 (2): 141- 151
doi: 10.11613/BM.2015.015
[1] 熊慧,景昭,刘近贞. 新型经颅磁刺激三层-8字形线圈的结构设计[J]. 浙江大学学报(工学版), 2021, 55(4): 793-800.
[2] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[3] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[4] 杨熠,钱旭升,周志勇,朱建兵,沈钧康,戴亚康. 采用影像组学的肾肿瘤组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.
[5] 吴谦,王平. 肺癌呼吸标志物筛选及其生物信息学分析[J]. 浙江大学学报(工学版), 2019, 53(12): 2389-2395.
[6] 杨婧,耿辰,王海林,纪建松,戴亚康. 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(6): 1164-1170.
[7] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[8] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1214-1220.
[9] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2432-2438.
[10] 陈婧, 许敏芬, 王立强, 袁波, 段会龙, 唐佳. 用于FICE图像增强效果的客观评价方法[J]. 浙江大学学报(工学版), 2015, 49(10): 2013-2017.
[11] 郑翔,张寅升,黄震震,贾峥,段会龙,赵饮虹,李昊旻. 可扩展的临床决策支持应用集成架构[J]. 浙江大学学报(工学版), 2015, 49(9): 1658-1664.
[12] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[13] 周聪聪, 涂春龙, 高云, 王飞翔, 何成, 龚红伟,连平, 叶学松. 腕戴式低功耗无线心率监测装置的研制[J]. 浙江大学学报(工学版), 2015, 49(4): 798-806.
[14] 李江,赵雅琼,包晔华. 基于混沌和替代数据法的中风病人声音分析[J]. 浙江大学学报(工学版), 2015, 49(1): 36-41.
[15] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1-2.